Final Presentation

Suspended Particle Explosions

Jochen Lauterbach Michael Bußler

Outline

- Introduction
- Fluid Simulation
- Particle Simulation
- Shadows and Light
- Improvements
- Demo videos

Introduction

- Suspended particle explosions:
- A particle system suspended in and interacting with a fluid simulation

Fluid Simulation

- Discretization into identical cells
- Velocity components defined on the corresponding faces
- Other values defined at the cell center (pressure, temperature etc)

- Timestep consists of:
- Advection: Transports all properties along the currents.
- Projection: Forces the velocity field to be mass conserving.

Particle Simulation

- All particles have the properties one would expect: position, speed, mass, temperature and many more...
- Particles interact with the fluid by exchanging heat and forces
- The particles "swim" in the fluid

Shadows and Light

- Deep shadow map approach:
- Scalar field holds the matter distribution
- Occlusion is computed for every cell, from that we calculate the amount of light reaching the cell

Improvements

- Porting the simulation to the GPU would likely increase speed
- The rendering might be improved with ray tracing techniques
- Appearance of the Explosions could be modeled closer on real explosions, matching color and other properties to photographs/videos

Demo

Questions?

