
RWTH Aachen University

Diploma Thesis

CUDA-Based Particle Tracing in Time-variant Tetrahedral
Grids

by

Michael Buÿler

RWTH Aachen University

Diploma Thesis

CUDA-Based Particle Tracing in Time-variant Tetrahedral
Grids

for the degree of Dipl.-Inform. in Computer Science

by

Michael Buÿler

Student Id.: 252 137

Prof. Dr. Torsten Kuhlen

Lehrstuhl für Hochleistungsrechnen

Virtual Reality Group

Prof. Dr. Leif Kobbelt

Lehrstuhl für Computergra�k

Supervisor: Dipl.-Inform. Tobias Rick

Date of issue: 27.08.2010

Statement

Hiermit versichere ich, daÿ ich die vorliegende Arbeit selbständig im Rahmen der an der
RWTH Aachen üblichen Betreuung angefertigt und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

I guarantee herewith that this thesis has been done independently, with support of the
Virtual Reality Group at the RWTH Aachen University and no other than the referenced
sources were used.

Aachen, August 27, 2010 ...

CONTENTS

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 5
1.3 Outline . 6

2 Foundations and Related Work 7
2.1 Simulation Domain Discretization . 7
2.2 Time-variant Flow Field Velocities . 10
2.3 Interactive Flow Field Visualization . 11

3 Tetrahedral Grid Processing 17
3.1 Tetrahedral Grids . 17
3.2 An E�cient Point Location Scheme . 19

3.2.1 Kd-Tree Construction . 20
3.2.2 Kd-Tree Traversal . 21
3.2.3 Tetrahedral Walk . 27
3.2.4 Node-to-Cell Lookup Table . 29

3.3 Search Evaluation . 30
3.4 Synthetic Datasets . 34

4 Interactive Particle Tracing 35
4.1 Particle Advection . 36
4.2 Flow Field Integration . 37
4.3 Adaptive Step Size Adjustment . 40

4.3.1 Step-Doubling . 40
4.3.2 Curvature-Based Step Size Adaption 41
4.3.3 In-Sphere Step Subdivision . 43

1

CONTENTS

4.3.4 Dopri-5 Adaptive Step Size Adjustment 44
4.3.5 Discussion . 47

4.4 Integration Performance Evaluation . 49

5 CUDA-Based GPU Implementation 55
5.1 General Purpose Computations on Graphics Processing Units 55
5.2 GPU Architecture . 57
5.3 The CUDA Programming Model . 60
5.4 CUDA-Based Particle Tracing . 61
5.5 Host System Implementation . 65

5.5.1 Data Flow Controller . 66
5.5.2 Time Step Loading and Processing 67

5.6 Rendering . 67
5.6.1 Virtual Environments and Immersive Display Systems 68
5.6.2 Graphical Representation of the Flow Field Domain 69
5.6.3 Depiction of the Traversed Cells 69

5.7 Discussion . 71

6 Results 73
6.1 System Overview . 74
6.2 The Real-World Engine Dataset . 75
6.3 Interactive Exploration Benchmark . 77

7 Conclusion and Future Work 81
7.1 Summary and Conclusion . 81
7.2 Future Work . 82

2

CHAPTER 1

INTRODUCTION

The tracing of massless particles through the unsteady �ow �eld of a time-variant do-
main is a convenient way to visualize the �ow data resulting from computational �uid
dynamics. This thesis presents an approach for the particle tracing in time-variant do-
mains resulting from real-world simulations, whereas the movement of the particles is
calculated entirely on the GPU using the CUDA framework. The simulation data is
given by several temporal states of the time-variant domain which are represented each
by a tetrahedral grid with embedded �ow �eld velocities. Inside an immersive Virtual
Reality environment, the time-variant �ow can be interactively explored while an in-
tuitive user interface is provided at the same time for the creation of particles within
domain under investigation.

1.1 Motivation

With the rising capabilities of computer systems, the complexity of models for modern
numerical simulations increases which leads to an immense amount of data resulting
from the calculation. Especially for the results of computational �uid dynamics (CFD)
simulations, which are normally given as a discrete distribution of �ow �eld velocities, an
appropriate scienti�c visualization technique is required in order to depict the behavior
of the simulated �uid in a meaningful manner and to detect and analyze important �ow
features and characteristics. The usage of a Virtual Reality (VR) environment hereby
alleviates the interactive exploration as it allows to immerse into the visualization of the
time-variant �ow by providing an almost holographic depiction while also o�ering an
intuitive user interface with full six-degrees-of-freedom.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Real-world examination of a sports car prototype in a wind tunnel [Pag05].
The airstream is visualized by smoke released from several dies.

While the �ow calculation using CFD simulation models can not completely replace
real-world �ow experiments, e.g. the examination of a prototype in a wind tunnel
while visualizing the air�ow with an almost massless matter like smoke (cp. Figure 1.1),
the synthetic reproduction of such settings is much cheaper and less time-consuming
while also providing additional degrees of interaction, e.g. by stopping the progression
of the simulation time in order to analyze the three-dimensional scene from various
perspectives. In addition, the �ow phenomena within certain highly dynamic processes
are only hard to observe, like the injection and compression of the combustible mixture
within an internal combustion engine. Such processes can be examined much easier
using simulated models, in view of the fact that the calculation of the compressible �uid
using CFD gives a highly accurate reproduction of the real �ow.

In order to achieve a visualization quality almost equivalent to real-world experiments,
the simulated �ow is illustrated by animating the movement of a vast amount of mass-
less particles, whose trajectories are traced through the �ow �eld of discrete velocities
(cp. Figure 1.2). The particles may be seeded at any location within the �ow �eld do-
main and at an arbitrary point in time within the simulation time frame in order to
explore the unsteady �ow within di�erent regions of the domain over time. The seeded
particles immediately follow the �ow, just like smoke emitted from a die.

The advection of a large particle population introduces high computational cost, espe-
cially for simulated �ow �eld domains discretized by unstructured grids and de�ned by
several temporal states resulting in a high data volume. Especially in an immersive VR
environment, it is crucial to achieve interactive frame rates at all times, which allows
only a small time frame for the calculation of the particle's movement, a task of which
mostly exceeds the capabilities of CPU-based particle tracers. Therefore, the approach

4

1.2. CONTRIBUTIONS

Figure 1.2: Visualization of a simulated �ow �eld depicted by the movement of massless
particles.

for particle tracing in unstructured time-variant tetrahedral grids presented in this the-
sis exploits the capabilities of today's programmable graphics hardware which features
many core processors with highly parallel, multithreaded computational power by using
the CUDA framework for the implementation.

1.2 Contributions

This thesis aims at the interactive exploration of complex, unsteady �ow �elds embedded
in time-variant tetrahedralized domains by simultaneously achieving interactive frame
rates for the visualization in immersive virtual environments. The following contribu-
tions are presented:

• The dealing with the original or decimated dataset of time-variant �ow �eld do-
mains represented by several tetrahedral grids whereas each grid describes the state
of the domain for one instant in time.

• An e�cient two-phase point location scheme including the traversal of a kd-tree,
which is entirely performed on the graphics hardware.

• A detailed description of the �ow �eld integration process using di�erent numerical
integration methods as well as an adaptive step size adjustment procedure based
on the embedded Dopri-5 integration scheme.

5

CHAPTER 1. INTRODUCTION

1.3 Outline

This thesis is structured as follows. Chapter 2 discusses the simulation domain dis-
cretization using unstructured grids with embedded �ow �eld velocities and presents
related work about interactive �ow �eld visualization. Chapter 3 describes the tetrahe-
dral grid data structure in detail and presents a solution to the point-location problem
on such grids using an e�cient two-phase search procedure, whereas di�erent methods
for the kd-tree traversal are described and compared in terms of run duration, accu-
racy and implementation e�ort. Chapter 4 describes the particle advection procedure
which requires the integration of the time-variant �ow �eld. Several approaches for the
adaptive adjustment of the integration step size are discussed and some performance
�gures are given for the �ow �eld integration using di�erent integration schemes when
performed either on the CPU or the GPU as well as for di�erent step sizes and particle
counts. An introduction to the CUDA programming model featuring a comparison of
the CPU and GPU architectures as well as a detailed description of the GPU-based
implementation of the entire particle tracing process is given in Chapter 5, including the
usage of the ViSTA VR Toolkit to allow the interactive exploration within an immersive
virtual reality environment. Chapter 6 examines the usability of the interactive particle
tracing approach on the real-world Engine dataset by measuring the performance of the
implementation for di�erent particle populations. Chapter 7 �nally gives a conclusion
of the thesis and a perspective for future work.

6

CHAPTER 2

FOUNDATIONS AND RELATED WORK

2.1 Simulation Domain Discretization

The kind of simulation data regarded in this thesis is the result of computational �uid
dynamics (CFD), one of the branches of �uid mechanics, which allows calculating the
�ow �eld of a �uid using a numerical method, e.g. the Navier-Stokes equation. CFD
is widely used for the simulation of �uids, e.g. the air�ow in a wind tunnel in order to
analyze the aerodynamic behavior of prototypes. Simpli�ed CFD simulations are also
used in �lms or video games to create special e�ects.

The equations used for CFD describe the continuous behavior of a �uid. One of the
key challenges in computing such a �uid is how to discretize the domain in which the
simulation is calculated. This can be done by dividing the domain into small cells that
form a volumetric grid. The �ow of the �uid is then calculated for each node of the
grid, resulting in an approximation of the continuous �ow �eld as a solution of the �ow
equation.

The simulation data regarded in this thesis is calculated on domains discretized by
tetrahedral grids. Those grids belong to the class of unstructured grids, which consist of
a set of points, the grid nodes, and an additional index structure that describes how the
nodes are connected to form the grid cells. In tetrahedral grids, those cells are geometric
primitives called tetrahedrons. In contrast to regular grids, where all cells are equally
shaped, tetrahedral grids have the signi�cant advantage, that the shape of the cells can
be arbitrarily chosen. Some parts of the domain can be simulated at �ner scale than
others and round shapes can be adapted by using an appropriate distribution scheme

7

CHAPTER 2. FOUNDATIONS AND RELATED WORK

(a) (b) (c)

Figure 2.1: Examples of di�erent domain discretizations using regular (a), rectilin-
ear (b) or unstructured grids (c) [Wik09].

for the grid nodes, which also a�ects the resolution of the grid whereas switching to a
�ner resolution in a regular grid a�ects the size of all grid cells (cp. Figure 2.1).

As a further advantage, unstructured grids can smoothly adapt to the boundaries of the
domain as well as to the outer hull of tessellated objects situated inside the domain.
As an example, Figure 2.2a shows the simulated pressure distribution for a tessellated
aircraft model embedded in a tetrahedralized domain [VDBO97]. Unstructured grids are
especially useful for domains with a complex shape, e.g. with a genus greater than zero.
By using an unstructured grid for the domain discretization, the grid nodes are only
distributed on the hull and within the domain, whereas many of the grid nodes would
be situated outside of the domain, if it is discretized using a regular grid. (cp. Fig-
ure 2.2b).

(a) (b)

Figure 2.2: By using tetrahedral grids for the domain discretization, the boundaries
of tessellated objects within the domain can be smoothly adapted, e.g. an aircraft in a
wind tunnel [VDBO97] or the complex shape of the human nasal cavity [Sch08].

8

2.1. SIMULATION DOMAIN DISCRETIZATION

Figure 2.3: The Engine dataset [Abd98] describes the �ow of the combustible mixture
inside a four-stroke internal combustion engine over several temporal states.

The methods presented in this thesis consider the original or decimated simulation data
of time-variant tetrahedralized domains. Those domains dynamically change their ap-
pearance over time to account for the simulation of highly dynamic processes. This
implies, that also the discretization of the domain changes over time. To handle this
alteration, the regarded time-variant domains are described by several temporal states,
where each state is represented by a tetrahedral grid with its own respective grid node
distribution, describing the state of the domain and the �ow for a speci�c point in
time.

As an example dataset, resulting from the computation of an unsteady �ow within a
time-variant domain, Figure 2.3 depicts some of the temporal states of a simulated four-
stroke internal combustion engine [Abd98], courtesy of the Institute of Aerodynamics
(AIA) at RWTH Aachen University. This dataset simulates the �ow of the combustible
mixture while the intake and compression stroke. Despite the opening and closing of the
engine's valves, the size of the combustion chamber changes, as the piston moves from
the top of the cylinder to its bottom, which leads to a highly dynamic process simulated
over several temporal states. Each domain state of the Engine dataset is discretized by
a tetrahedral grid with respective grid node distribution and cell shapes.

9

CHAPTER 2. FOUNDATIONS AND RELATED WORK

2.2 Time-variant Flow Field Velocities

The unsteady �ow �eld of a time-variant tetrahedralized domain is de�ned at the nodes
of several tetrahedral grids, each one representing the state of the �ow for one instant
in time. It is calculated by computational �uid dynamics which yields the �ow for each
domain state, e.g. as a solution of the Navier-Stokes equation.

The simulation data embedded in a tetrahedral grid can be described as a mapping

u(x, t) : Ω× Π→ RM (2.1)

of discrete locations x within the �ow domain Ω ⊆ Rn, e.g. the nodes of the grid,
and discrete time values t ∈ Π ⊆ R de�ned by the temporal states of the domain to
M -dimensional attributes, where M equals three for the �ow velocity data.

In order to calculate the �ow �eld velocity for positions in between the grid nodes, the
velocity de�ned at the grid nodes needs to be interpolated. To determine, which nodes
to consider for the velocity interpolation, the cell structure of the tetrahedral grid is
used. Hence, the surrounding cell of the position to evaluate the �ow �eld velocity for
needs to be estimated. If that cell is known, the velocity of the respective position is
calculated by interpolating between the velocities of the four grid nodes forming the
tetrahedron cell.

Several tetrahedral grids are used to describe the time-variant nature of the regarded
domains. This also a�ects the simulated �ow, which is de�ned separately for each
temporal state and changes over time. To account for the altering �ow �eld velocities,
a temporal interpolation for the position to evaluate needs to be performed. This is
realized by interpolating between each two consecutive temporal domain states, as the
exact solution of the CFD is only known at that discrete time intervals [Lan93].

As depicted in Figure 2.4, the position-dependent interpolation of the �ow �eld velocities
in each tetrahedral grid together with the temporal interpolation between two consec-
utive �ow �eld states leads to a continuous distribution of the �ow velocity over the
entire domain, which can be evaluated for every point in time within the simulation
time frame:

v(x, t) : R3 × R→ R3 (2.2)

where t0 ≤ t ≤ tN for a dataset with N distinguished temporal domain states. For
positions outside of the �ow �eld domain, the velocity is de�ned as 0⃗ for each moment
in time.

10

2.3. INTERACTIVE FLOW FIELD VISUALIZATION

Figure 2.4: The �ow �eld velocity for a position within the domain is obtained by
interpolating between the discrete velocity data de�ned at the grid nodes and by inter-
polating between two consecutive domain states.

2.3 Interactive Flow Field Visualization

The goal of the interactive visualization of time-variant �ow �eld data is to depict the
behavior of the �ow over time in a meaningful manner in order to detect and analyze
important �ow features and characteristics. The major problems to solve in this research
area are the handling of large datasets resulting from complex simulations over several
time steps, the intuitive interaction with the dataset and the computation time on
unstructured grids.

A wide spectrum of �ow �eld visualization techniques was developed for two- and three
dimensional datasets according to di�erent purposes [PVH+03]. An overview about
the research that has been done in the �eld of integration-based geometric �ow �eld
visualization for the last two decades is given in [MLP+09].

An application for di�erent visualization techniques on unstructured, time-varying CFD
grids with adaptive resolutions is presented in [GLT+06], where di�erent visualization
techniques are presented to illustrate the swirl and tumble motion patterns of a simu-
lated Engine dataset, including particle trajectories and stream surfaces [GTSS04]. The
�ow �eld visualization using stream surfaces can be enhanced by using texture-based
advection [LGSH06], which maps a streamline-like �ow illustration to the surface by
�ltering noise textures along the underlying �ow �eld.

A similar approach was used by [VFWTS08] to represent the structure of smoke within
turbulent �ow �elds as semi-transparent streak surfaces. [BFTW09] presents a technique
to visualize unsteady �ows as streak surfaces using adaptive �ow �eld integration and
rendering in real-time by utilizing the computational power of present GPUs. An alter-
native approach to interactively generate time- and streak surfaces on large time-variant

11

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Figure 2.5: A textured streak surface illustrating the �ow behind an ellipsoid [KGJ09].

datasets is presented in [KGJ09] (cp. Figure 2.5).

The methods to generate streak surfaces are based on the visualization technique used
in this thesis, the interactive tracing of massless particles through the time-variant �ow
�eld [BPSS02], a kind of visualization approach, which is adopted from the �ow analysis
of real world experiments, as presented in [SL00], for example. This method enables the
user to intuitively explore the �ow �eld of unsteady domains. Particles can be seeded
at every point inside the domain using di�erent seeding strategies. The seeded particles
are immediately carried away by the �ow, similar to a torch, which emits smoke in a
real turbulent environment, or ink, injected to water. As the particles follow the �ow,
the continuous animation of their movement gives an intuitive impression of the �ow
behavior in the course of time.

Despite the depiction of the instantaneous particles' positions, additional information is
obtained from depicting di�erent kinds of particle trajectories, which also depends on
the handling of time information:

• Streamlines are the tangents of the �ow �eld velocities for one moment in time.
They change their entire appearance over time in case of a time-varying �ow �eld.

• Pathlines depict the paths of the particles through the time-varying �ow �eld.
They give an impression about how the particle trajectories change over time.

• Streaklines are created by connecting the positions of particles seeded continuously
at a �xed position. The visual appearance of the streaklines is similar to the
continuous release of smoke from a die in real wind tunnel experiments.

• Timelines are connections between particles, which were released at the same
moment in time, but at di�erent positions.

12

2.3. INTERACTIVE FLOW FIELD VISUALIZATION

The advection of particles through the �ow domain requires numerical integration of
the �ow �eld velocity as well as adaptive step size adjustment. The integration should
be performed using a higher-order method like the third- or fourth-order Runge-Kutta
integration scheme, as the simple �rst-order Euler integration shows some inadequa-
cies [Bun88]. To calculate a higher-order accurate integration of the �ow �eld, several
evaluations of the �ow �eld velocity are needed, which are computational expensive on
unstructured grids. A specialized Runge-Kutta integrator for steady unstructured �ow
�elds was introduced by Ueng in [USM96]. His approach requires some pre-processing,
but the calculation of the fourth-order accurate solution requires only a matrix-vector
multiplication and a vector-vector addition.

Also for steady unstructured vector �elds, Kenwright and Mallinson [KM92] presented a
method which completely avoids the �ow �eld integration by calculating the intersection
of two stream surfaces. This yields the exact path of a particle that is located at the
intersection. Another approach to avoid the integration calculation in steady vector �elds
is presented by Kipfer in [KRG03] as an extension of the locally exact path calculation
approach of Nielson and Jung [NJ99]. Kipfer's approach describes the interpolation
within a tetrahedron cell as a linear mapping and uses Eigen decomposition to calculate
the exact points where a particle enters and leaves a cell. Unfortunately, the locally
exact particle tracing approaches cannot easily be adopted to time-variant domains as
they do not account for the temporal interpolation.

In [KL96], Kenwright and Lane describe a method to compute particle trajectories in
time-varying �ow �elds on moving curvilinear grids, which are decomposed into tetrahe-
drons. They also present a solution to the point-location problem on tetrahedral grids,
which is similar to the cell searching method presented in [USM96]. Their method com-
putes the natural coordinates for a point w.r.t. the cell, in which the point is located.
The natural coordinates can also be used to interpolate the simulation data at that
point, which gives equal results compared to physical space interpolation and volume
weighted interpolation.

A solution to the point-location problem on large unstructured grids is given by Langbein
et al. in [LST03]. Their approach uses a kd-tree in order to index the grid nodes and
to perform a fast nearest-grid-node search. A lookup-table is then used to �nd the cells
that belong to a certain vertex. Still, the point-location problem on unstructured grids
remains a challenging task, as a vast amount of particles is needed to convey a visual
impression to some extend similar to real-world experiments.

Most of the current research in �ow �eld visualization using particle tracing techniques
relies on the computational power of modern graphics processing units (GPUs), to handle
a huge amount of particles at interactive frame rates. The particle tracing approach of
Krüger et al. [KKKW05] considers steady 3D �ow �elds on uniform grids and exploits the
graphics rendering pipeline for GPU-based computations. The computations are hereby
mapped to graphical elements and performed by invoking vertex- and fragment shader

13

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Figure 2.6: Interactive particle seeding in an immersive virtual environment [Sch08].

programs within the rendering process. By performing depth-sorting on the GPU, the
transfer of particle data from the GPU to the CPU and vice versa is avoided.

In his Ph.D. Thesis [Sch08], Schirski presents a similar approach for GPU-based particle
tracing using the graphics rendering pipeline. He introduces the usage of 3D textures to
store the uniform grid of unsteady �ow �elds, which speeds-up the �ow �eld integration
process, as velocities are directly interpolated within graphics hardware. Schirski also
presents a method for particle tracing on steady tetrahedral grids with time-varying �ow
�elds, as well as an e�cient particle rendering approach for immersive VR environments
using user-centered billboards for the depiction of the instantaneous particle positions
(cp. Figure 2.6).

When dealing with GPU-based particle tracing, a major problem is the limited amount
of memory provided by graphics devices. In his discussion about time-varying �ow �elds,
Schirski states, that the streaming of data to the GPU is a non-avoidable bottleneck,
as all data must pass the shared system bus between the host system and the graphics
adapter. He presents a demand-driven method featuring region-of-interest, to handle
large datasets using a HPC back-end and to convert tetrahedral grids into uniform grids
reducing the data that needs to be streamed to the GPU in order to calculate the particle
advection.

To face the problem of the bottleneck between the CPU and the GPU when transferring
large tetrahedral grids, Weiler [WMKE04] describes a method to reduce the amount
of tetrahedron cell data by storing the cells as texture-encoded strips, similar to how

14

2.3. INTERACTIVE FLOW FIELD VISUALIZATION

it is done with triangular strips. Another approach to reduce the amount of data is
the decimation of the initial tetrahedral grids [VGVW99], whereas the simulation data
embedded in the grid needs to be considered as a factor for the decimation operator,
as proposed by Chopra and Meyer [CM02] for scalar values. Still, how to perform
tetrahedral grid decimation on a HPC back-end remains an open task.

15

CHAPTER 3

TETRAHEDRAL GRID PROCESSING

This chapter describes the methods that are used to handle the simulation data repre-
sented as unstructured tetrahedral grids. The storage of those grids is depicted and an
e�cient localization scheme is presented, which is used to �nd the surrounding cell of
an arbitrary position within the grid.

3.1 Tetrahedral Grids

In this thesis, time-variant �ow �eld domains are considered, which are discretized by
tetrahedral grids. As each tetrahedral grid describes the state of the simulated domain
for a certain point in time, time-variance is achieved by using several tetrahedral grids.
Therefore, every point in time introduces a complete dataset including the additional
overhead for the search structure that is used for the point location within the unstruc-
tured grid. This typically leads to a high amount of data that needs to be dealt with.
For example, a typical tetrahedral grid for the simulation of computational �uid dynam-
ics can raise the memory requirements to store a single temporal state of the �ow �eld
domain to one gigabyte and above. This exceeds the memory capacity of today's graph-
ics card's memory. Such datasets need to be restructured in order to �t the memory
limitations that are introduced by GPU-based computations.

The state of the �ow �eld for one instance in time is de�ned as a discrete distribution
of velocity vectors. This distribution results from the positions of the grid nodes, as
the �ow �eld velocities are de�ned at those positions. To evaluate the velocity at an
arbitrary location within the �ow �eld domain, the velocities at the grid nodes are

17

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

Figure 3.1: A Fragment of a tetrahedral grid which consists of �ve vertices and two
adjacent cells sharing a common face.

linearly interpolated, which leads to a continuous distribution of the �ow �eld velocity.
To decide, which grid nodes need to be considered for the velocity interpolation, the
cell structure of the tetrahedral grid is used. If the cell which includes the position
to evaluate is known, the interpolation can be calculated by determining the natural
coordinates of the position w.r.t. the cell nodes. The natural coordinates are then used
as factors to weight the velocities de�ned at the four cell nodes.

For the internal representation, a tetrahedral grid consists of a list of vertices and a list
of references, that describe how the vertices are connected to form the tetrahedron cells,
as well as a list of velocity vectors de�ned at the grid nodes. The references are stored
for each cell as the indices of the four nodes that belong to the cell (cp. Figure 3.1). As
adjacent cells share common nodes, the number of cells is typically much higher than
the number of nodes.

In graphics device memory, data structures should be aligned to 16 bytes in order to
maximize e�ciency of the memory access and therefore maximize memory throughput
[NVI10a]. Thus, for tetrahedral grids stored in graphics card memory, coordinates and
velocities are stored using 4 �oating-point values, whereas each �oating-point and integer
value requires 4 bytes of memory. As only three �oat values need to be stored for three-
dimensional point and vector coordinates, the fourth component can be used to store
an additional per-vertex scalar. Altogether, an unstructured tetrahedral grid for one
instance in time with n nodes and m cells is internally represented as:

• An array of coordinates for the grid nodes, represented by 4n �oating point values.

• An array of velocities, which is also represented by 4n �oating point values.

• An array of indices, which consists of 4m integer values and represents the tetra-
hedron cells.

18

3.2. AN EFFICIENT POINT LOCATION SCHEME

Figure 3.2: To locate the surrounding cell of a query position, a two-phase point
location scheme is used. First, a global search is performed using a kd-tree to �nd a grid
node near the query positions. Then a short tetrahedral walk is performed to locate the
surrounding cell.

Hence, the total amount of memory, that is needed to store a dataset of k time steps
is k · (32nj + 16mj) bytes, where nj is the number of grid node and mj the number of
tetrahedron cells of the j'th time step and 1 ≥ j ≥ k. For example, a dataset with
50 time steps, 200K nodes and 1M cells requires approx. 1GB of storage.

3.2 An Efficient Point Location Scheme

Unstructured grids have many advantages when used to discretize a domain, like arbi-
trary point distribution and adaption of boundary cells to the domain's hull as well as to
objects situated inside the domain, which makes this data structure favorable for CFD
simulations. But this degree of freedom comes at a greater cost for the visualization of
the results, as the particles used to visualize the �ow �eld must be located inside the un-
structured grid. Also, while the particles are advected through the �ow �eld domain, the
information which cell currently surrounds a certain particle, needs to be continuously
updated.

As depicted in Figure 3.2, the point location scheme used in this thesis is divided into
two phases. In the �rst phase, a rough localization within the unstructured grid is
performed using a kd-tree, which yields a grid node near to the query position. A node-
to-cell lookup table is then used to obtain a cell associated with the grid node. In the
second phase, a short tetrahedral walk is performed to �nd the cell that contains the
query position. This point location scheme is similar to the one presented in [Sch08].

19

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

The two-phase point location scheme introduces additional index structures for each
tetrahedral grid:

• A kd-tree structure indexing the nodes of the grid to perform the nearest-grid-node
search, which consists of a �oating point array and an integer array, each with four
bytes per entry, as well as a character array with one byte per entry, yielding a
storage amount of 9 · 2⌈log2 n⌉ ≈ 9n bytes in total, if every leaf of the tree contains
a single grid node.

• A list of cell neighbors to perform the tetrahedral walk. The list contains four
integer values per cell and requires another 16m bytes for storage.

• An additional node-to-cell lookup table to query the cell index given a grid node
index. As only one integer index per node is needed, the table requires 4n bytes
within memory.

The additionally required memory per time step for the index structures is ≈ 13n+16m
bytes in total. For the example given above, this results in approx. 2.5MB for the kd-
tree and 15.3 MB for the cell neighbors per time step. The kd-tree and cell neighbors
can be pre-computed and stored to speed-up the data loading.

3.2.1 Kd-Tree Construction

A kd-tree is a space-partitioning search structure, which is used to organize a set of
k-dimensional points and to perform an e�cient nearest-neighbor search of a given query
position. Here, the kd-tree structure is used to organize the set of nodes of a tetrahedral
grid, in order to �nd the nearest grid node of a given position inside the domain. The
kd-tree construction procedure used in this thesis is similar to the one described by
Langbein in [LST03]. The kd-tree is created by repeatedly de�ning planes, so that half
of the points lie on each side of every plane, separating the current set of points into two
half sets.

The tree is internally represented by three arrays (cp. Figure 3.3). The inner nodes of
the tree are stored as two arrays: An array D of char values holding the dimensions of
the splitting planes by which the point set was separated in each partitioning step, as
well as a �oating point array S, which stores the coordinate value of the splitting plane
according to the chosen dimension. The third array L represents the leaves of the tree,
in which the point indices of the grid nodes are stored.

The kd-tree is build-up recursively with an (optional) level factor to constrain the number
of levels of the �nal kd-tree, which also a�ects the number of point indices in each
leaf. The list of input nodes is copied, whereas the original index of every node of the

20

3.2. AN EFFICIENT POINT LOCATION SCHEME

Figure 3.3: The kd-tree search structure is represented by two arrays for the inner
nodes and another array for the leaf nodes.

tetrahedral grid is stored. If the number of input nodes is not a power of two, some of
the original nodes at inserted twice to �ll the gap.

As criteria for the split, Langbein proposes a mixture of the largest axis of the current
box with the largest axis of the bounding box of thousand randomly chosen vertices
inside the current box. These values are multiplied and the largest axis is chosen as the
dimension of the split. Then, all vertices are sorted according to the split dimension
using the quickselect method proposed in [Dev98]. The component of the median vertex
according to the chosen dimension de�nes the plane, by which the point set is separated
in this stage.

This procedure is repeated recursively for the two half-sets resulting from the split while
the level factor l is decremented by one to give a breaking condition for the recursion.
On the last level, where l = 0, the indices of the boundary nodes of the current bucket
are stored as the leaves of the current sub-tree.

After the recursive build-up process has �nished, the resulting tree structure is traversed
breadth �rst in order to copy the actual split- and dimension values to the corresponding
arrays S and D. Once a leaf node is reached, the point index stored in this leaf is
appended to the index array L.

3.2.2 Kd-Tree Traversal

For the point-location scheme, the kd-tree index structure is used to locate the nearest
grid node of a query point q = (xq, yq, zq). This is done by traversing the tree structure
and making a binary decision on each level of the tree which sub-tree to traverse next.
Several methods exist, which describe how to traverse the kd-tree in order to �nd the
nearest grid node. The methods use di�erent approaches for the tree traversal procedure,
which leads to certain advantages and disadvantages. In this thesis, three methods are

21

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

(a) (b)

Figure 3.4: The Single-Pass nearest-neighbor search traverses the tree once from top
to bottom. It �nds a grid node near the query point, but not always the nearest one.

examined: The Single-Pass method, the Randomized method and the Backtracking
method. All methods are distinguished in terms of complexity, runtime behavior and
accuracy.

Single-Pass The Single-Pass nearest-neighbor search method is the simplest approach
to traverse the kd-tree structure. As depicted in Algorithm 1, the method traverses the
tree once, from top to bottom, starting at the root node of the tree with array index
i = 0. On every level of the tree, the value of the current split plane, stored in Si, is
compared to the respective component qDi

of q given by the dimension stored in Di,
which is either 0 for xq, 1 for yq or 2 for zq. To advance to the next level of the tree, the
index i is multiplied by two and an o�set value is added to i, which is 1, if qDi

is smaller
than Si or else 2 (cp. Figure 3.4a). Once the last level of the tree is reached, the index
of the respective leaf node in L is calculated by subtracting the total number or inner
nodes from i. The point with index Li is then returned as the nearest grid node.

This method has a runtime of O(log n), where n is the number of points, stored in the
tree. On every tree level, the set of possible grid nodes is halved. After log n steps the
last level of the tree is reached, where the index of the nearest grid node is stored. The
Single-Pass algorithm is very straightforward to implement, as it only iterates through
the arrays once while incrementing an index variable. This is a desired behavior in a
multi-threaded environment, as all threads starting together �nish at the same time.

Unfortunately, the Single-Pass traversal method it is not guaranteed to �nd the nearest
grid node to the query point q. The decision, which part of the kd-tree is traversed
next, relies solely on the position of the current splitting plane. There are occasional
situations, in which the nearest grid node is located in the other half space that is not
traversed. Such a situation is depicted in Figure 3.4b. Here, the algorithm returns p1 as
nearest grid node, rather than p2, which is even nearer to the query point q. Hence, to

22

3.2. AN EFFICIENT POINT LOCATION SCHEME

Algorithm 1 Single-Pass-Nearest-Neighbor-Search(q)

Require: A kd-tree given as split values S, split dimensions D and point indices L.
Require: A query point q.
Ensure: p is the nearest neighbor to q.

i← 0
for all tree levels do
if qDi

< Si then

i← 2i+ 1
else

i← 2i+ 2
end if

end for

i← i− 2N

return Point p with index Li

�nd p2 as the nearest neighbor, a procedure is required, which also traverses alternative
paths in the tree. Still, as several experiments have shown, the grid node found by the
Single-Pass traversal method is mostly quite near to the nearest neighbor.

Randomized The Randomized kd-tree traversal method proposed in [Pan08] is an en-
hanced version of the Single-Pass method. An approach called random restart is used
to perform the kd-tree traversal several times (cp. Figure 3.5a). In every iteration, the
nearest-neighbor search is performed for a randomly chosen query point q′ near the orig-
inal query point q. Hence, the Randomized traversal method facilitates the examination
of di�erent paths within the kd-tree, which may include the nearest grid node.

The procedure of the Randomized nearest-neighbor search is described in Algorithm 2.
At �rst, a Single-Pass nearest-neighbor search is performed for the query point q to
estimate the distance d to the current nearest grid node. The next query point q′ is
randomly chosen to lie on a sphere around q with radius d, which is the distance of
the original query point to the current nearest grid node found so far (cp. Figure 3.5b).
The Single-Pass nearest-neighbor search is then repeated for the new query point q′. If
the distance of the original query point q to the grid node p′ found in this iteration is
lower than the distance to the previously found grid node p, the procedure chooses p′ as
nearest neighbor. This procedure is repeated several times for randomly chosen query
points q′ to �nd the nearest grid node of the original query point.

By repeating the Single-Pass nearest-neighbor search several times with randomly chosen
query points, the problem that this method might fail to �nd the nearest grid node is
somewhat relaxed. The binary decision, which sub-tree to traverse in the next step,
can now lead to the traversal of a di�erent part of the kd-tree, which may include the

23

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

(a) (b)

Figure 3.5: The Randomized search method traverses the tree several times with
altering query points. This leverages the possibility that the nearest neighbor of the
given query point is found, as also alternative paths are examined.

nearest grid node of q. The more often the random restart is performed, the more
increases the possibility, that the nearest grid node is found. For the implementation,
this method inherits the simplicity of the Single-Pass method enhanced with a random
restart approach. The runtime of this method is derived from the runtime of the Single-
Pass method as O(m log n), where m is the number of random restarts.

Backtracking The third method to traverse the kd-tree is the Backtracking nearest-
neighbor search ([Ben90]). This method is guaranteed to always �nd the nearest grid
node of the given query point q, as every sub-tree that may include the nearest neighbor
is traversed using a backtracking mechanism (see Figure 3.6a). While the Backtrack-
ing method is usually recursively implemented, the algorithm presented in this thesis
describes an iterative implementation of the method. This is due to the fact, that the
CUDA GPU programming interfaces doesn't allow recursive function calls [NVI10a]. An
iterative implementation of this traversal method on the other hand can be ported to
the CUDA framework without much e�ort.

The iterative search procedure is depicted in Algorithm 3. It uses a stack St (a last-in
�rst-out data structure) for the backtracking performance, as well as a queue Q (a �rst-
in �rst-out data structure) which stores the indices of those sub-tree root nodes, that
are alternatively traversed. The root node of the kd-tree with index 0 is initially stored
in Q to start the procedure.

At �rst, the kd-tree is traversed top to bottom, similar to the procedure described in
Algorithm 1, whereas the index of each visited node is stored in St. The distance of
the query point q to the found grid node p′ is stored as the current best distance d and
p′ is stored as the current nearest neighbor. Then, the backtracking step is performed
using the stack St, to visit all tree nodes again in reversed order. In this phase, every

24

3.2. AN EFFICIENT POINT LOCATION SCHEME

Algorithm 2 Randomized-Nearest-Neighbor-Search(q)

Require: A kd-tree given as split values S, split dimensions D and point indices L.
Require: A query point q.
Require: The number of iterations m.
Ensure: p is the nearest neighbor to q.

p← Single-Pass-Nearest-Neighbor-Search(q)
d← ∥ p− q ∥
for i = 1 to m do

q′ ← Random point on sphere around q with radius d
p′ ← Single-Pass-Nearest-Neighbor-Search(q′)
d′ ← ∥ p′ − q ∥
if d′ < d then
p← p′

d← d′

end if

end for

return p

split value Si is checked for whether the nearest grid node may be found on the opposite
half space of the current splitting plane. As depicted in Figure 3.6b, this is done by
testing whether qDi

+ d > Si if qDi
≤ Si (the left half space was chosen before), or

else qDi
− d < Si, where qDi

is the Di'th component of q. If one of the conditions is
ful�lled, the index of the root node of the alternative sub-tree is stored in the queue Q
and the backtracking process is continued. After all nodes were visited again, the tree is
traversed once more from top to bottom starting at the next root node from the queue.
Each alternatively found grid node is tested and the current best distance d and the
current nearest neighbor p are updated accordingly. This process is repeated, until Q is
empty, which indicates that no more alternative sub-trees need to be traversed and p is
the nearest grid node to q.

The backtracking step ensures, that all half spaces of the kd-tree are traversed which
may include the nearest grid node to the query point q. In every iteration, the current
best distance is updated to minimize the number of alternative paths that need to be
traversed. Overall, this method always returns the nearest grid node after the procedure
�nishes. Unfortunately, the runtime of the backtracking nearest-neighbor search is ex-
ponential in the worst case [LW77]. Also, even the described iterative implementation
needs adjustments to the code when ported to the CUDA framework, as this framework
does not yet provide built-in LIFO and FIFO data structures.

25

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

(a) (b)

Figure 3.6: The Backtracking nearest-neighbor search performs several backtracking
steps to traverse every sub-tree that may include the nearest neighbor of the given query
point.

Algorithm 3 Backtracking-Nearest-Neighbor-Search(q)

Require: A kd-tree of N levels, split values S, split dimensions D and point indices L.
Require: A query point q.
Require: A FIFO data structure Q and a LIFO data structure St.
Ensure: p is the nearest neighbor to q.

Q← 0
while Q is not empty do

i← Q
while i < 2N do

/* Traverse tree top to bottom from node i and store each node index in St */
end while

p′ ← Point with index Li−2N

d′ ← ∥ p′ − q ∥
if d′ < d then
d← d′,p← p′

end if

while St is not empty do
i← St
if qDi

> Si ∧ qDi
− d < Si then

Q← 2i+ 1
end if

if qDi
≤ Si ∧ qDi

+ d > Si then

Q← 2i+ 2
end if

end while

end while

return p

26

3.2. AN EFFICIENT POINT LOCATION SCHEME

Figure 3.7: In the natural coordinate system of a tetrahedron cell, a position is de-
scribed as linear combination of the four cell nodes

3.2.3 Tetrahedral Walk

Both, the nodes of the tetrahedral grid and the query positions for the cell search,
are located in the physical coordinate system of the domain. To check, whether a
query position lies inside a tetrahedron cell, the coordinates of the position needs to be
transformed to the local coordinate system of that cell, called the natural coordinates.
In natural coordinate space, testing whether a point lies inside a cell can simply be done
by checking whether the calculated natural coordinates are valid. This approach can be
extended to a point location scheme as proposed by [KL95].

In natural coordinate space, a position x is described as

x(ξ, η, ζ) = x1 + (x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ (3.1)

where xi = (xi, yi, zi)
T , i ∈ {1, . . . , 4} are the positions of the nodes of a cell in physical

coordinate space (cp. Figure 3.7). This function can be inverted, to calculate the natural
coordinates of a query point q = (xq, yq, zq)

T given in physical coordinates. Therefore,
the above equation is rewritten as equation system xq − x1

yq − y1
zq − z1

 =

 x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

 ·
 ξ

η
ζ

 (3.2)

and solved by multiplying the inverse of the 3 × 3 matrix on the right to both sides,
which yields: ξ

η
ζ

 =
1

V
· A ·

 xq − x1

yq − y1
zq − z1

 (3.3)

27

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

Figure 3.8: If one or more of the natural coordinates of a position are lower than 0,
the position is outside of the cell.

where the rows of the (constant) matrix A are given by

A1,− = ((x3 − x4)× (x4 − x1))
T

A2,− = ((x1 − x2)× (x4 − x1))
T

A3,− = ((x1 − x2)× (x2 − x3))
T

(3.4)

and the determinant V of the matrix is given by:

V = (x2 − x1) · ((x3 − x1)× (x4 − x1)) (3.5)

The calculation scheme described in Equation (3.3) can be used to directly calculate the
natural coordinates of a query point q in physical coordinates for a given cell c. If c
contains q, the following four conditions are ful�lled:

ξ ≥ 0, η ≥ 0, ζ ≥ 0, 1− ξ − η − ζ ≥ 0 (3.6)

If one or more of the conditions are violated, the query point q lies outside of c and
another cell needs to be tested (see Figure 3.8). Therefore, the natural coordinates also
indicate the cell cnext that should be tested afterwards. If, for example, the condition
ξ ≥ 0 is violated, the cell ccont that contains q may share a common face with c, the
face where ξ = 0. Similarly, this holds, if η ≥ 0 or ζ ≥ 0 are violated. If the last
condition, 1 − ξ − η − ζ ≥ 0 is violated, then ccont may share the diagonal face with c,
where ξ + η + ζ = 1.

This consideration is used for the tetrahedral walk cell location scheme. In each iteration,
the natural coordinates of q are calculated for the current cell. If one or more of the
conditions given by Equation (3.6) are violated, the worst violator is determined and
the cell, that shares the face de�ned by the worst violator is tested in the next iteration.

28

3.2. AN EFFICIENT POINT LOCATION SCHEME

Even, if ccont is not found in the next iteration, the worst violator still gives a good
heuristic, which cell to test next. This procedure is iterated until all conditions of
Equation (3.6) are ful�lled or a boundary cell is reached, in which case no further cells
can be tested. In this case, a cell for the query position could not be located and the
query is rejected. In the former case, the cell containing the query point is found and
returned.

Once, the cell ccont containing the query point q is found, the natural coordinates of q
w.r.t. ccont are used for the linear interpolation, i.e. the attribute �eld u at position q is
given by

u(q) = u1 + (u2 − u1)ξ + (u3 − u1)η + (u4 − u1)ζ (3.7)

where u1 . . . u4 are the attributes de�ned at the grid nodes x1 . . .x4.

This cell location scheme is only useful, if the number of cells that need to be tested can
be limited. Otherwise, too many iterations must be performed to locate the right cell,
especially if the number of grid cells is large. To avoid those long tetrahedral walks, the
starting cell for the walk is estimated by calculating the nearest grid node of the query
point q using one of the kd-tree based nearest-grid-node search methods described in
Section 3.2.2. One of the cells associated with the nearest grid node is then used as
starting cell for the tetrahedral walk, which is obtained by the node-to-cell lookup table
described in the following.

3.2.4 Node-to-Cell Lookup Table

The kd-tree search structure is used to organize the grid nodes, as their number is
considerably smaller compared to the number of cells. It is used in the global search
phase to locate a grid node near the query point while the tetrahedral walk procedure
is used to locate the surrounding cell in the local search phase. In order to perform the
tetrahedral walk e�ciently, the index of a cell in the neighborhood of the query positions
is required. Therefore, a link between the nearest grid node and a cell that references
this node is needed. This node-to-cell assignment is ambiguous, as grid nodes are usually
indexed to belong to more than one cell.

The construction of the node-to-cell lookup table used in this thesis is rather simple.
The table is represented by two lists: The �rst list N stores an o�set for each grid node
and is used to access the second list C which stores the indices of the cells referencing
the grid node (cp. Figure 3.9).

Two passes over all cells are required to construct the lookup table. In the �rst pass,
a temporary array is �lled for each grid node with the number of cells referencing this

29

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

Figure 3.9: The table that is used to look-up the cell index for a grid node consists of
two lists: one that stores the cell indices and another one that stores an o�set for each
grid node.

node. Based on this values, an o�set is calculated for each node and stored in N . The
sum of all cell counts is used as the length of the second array C. In the second pass,
C is �lled with the indices of the referencing cells. Hereby, N is used to access C while
an additional temporary array stores the number of already inserted cell indices for each
grid node.

The ambiguity of the node-to-cell assignment is resolved by choosing for each node the
respective cell with the lowest cell index, which is referenced directly by the o�set stored
in N . One problem that arises from the ambiguity is that the chosen cell is not always
the optimal one to start the tetrahedral walk at. In rare occasions, the tetrahedral
walk needs to traverse several of the cells referencing the chosen grid node, until the
surrounding cell is found. One way to handle this problem is the usage of a kd-tree
which yields cell indices directly, e.g. by storing the centers of gravity of all cells in the
tree structure. On the other hand, the amount of memory required to store this kd-tree
would be much increased, as the number of cells generally exceeds the number of grid
nodes by half an order of magnitude.

3.3 Search Evaluation

While the Single-Pass kd-tree traversal method does not always �nd the nearest grid node
of a given query point, it has the advantage of simplicity and gives a �xed run duration
determined by the number of tree levels. The Backtracking method always �nds the

30

3.3. SEARCH EVALUATION

Figure 3.10: Average number of tetrahedral walk steps and run duration of the di�erent
kd-tree search methods to perform the point-location scheme on a tetrahedral grid with
uniformly distributed grid nodes.

nearest grid node, but at a cost of eventually exponential runtime. The Randomized
method inherits the simplicity and �xed runtime properties from the Single-Pass method
but has a higher probability to �nd the nearest grid node of a given query point. Overall,
there exists a tradeo� between accuracy, run duration and implementation e�ort.

For the evaluation of the presented kd-tree traversal methods, the entire point-location
scheme described in Section 3.2 was performed for 100K random query points initially
created inside the domain of a cube with an edge length of two. Several synthetic
tetrahedral grids with a di�erent number of grid nodes were created for this domain as
described in Section 3.4, to analyze the impact of di�erent grid structures on the runtime
behavior and accuracy of the described traversal methods. The grids were generated by
distributing the grid nodes on regular grids of various dimensions, which were then
tetrahedralized to create the cell structure. Some randomness in the distribution of the
grid nodes was also introduced to generate unstructured grids with varying cell sizes. For
each grid, the kd-tree was constructed as described in Section 3.2.1. As metric for the
accuracy of the di�erent tree traversal methods, the average number of tetrahedral walk
steps needed to locate the cell that contains the query point is used. The tetrahedral
walk hereby starts at the cell obtained from the node-to-cell lookup table for the grid
node which was found by each of the kd-tree traversal methods. This should describe the
impact of the accurary of the di�erent nearest-grid-node search methods on the entire
point-location procedure quite well.

The results of the evaluation of the kd-tree traversal methods for uniformly distributed
grid nodes are shown in Figure 3.10. For this setting, the average number of tetrahedral

31

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

Figure 3.11: Number of tetrahedral walk steps and runtime behavior, when adding a
small variation to the grid node distribution.

walk steps is almost the same for the di�erent grid sizes when using the Randomized or
the Backtracking kd-traversal methods, whereas the number of steps using the Single-
Pass method is slightly higher. Regarding the whole run duration to locate the nearest
grid nodes of all query points, the duration of the Single-Pass and the Randomized
method on di�erent grid sizes are almost constant, whereas the time needed to perform
the search using the Backtracking method grows exponentially with an increased number
of grid nodes. If a small variation in the distribution of the grid nodes is introduced, the
average number of tetrahedral walk steps is still almost the same for the Randomized
and the Backtracking method (cp. Figure 3.11). When using the Single-Pass method
for the point location, on average half of a tetrahedral walk step needs be additionally
performed compared to the other methods. The run duration of the search methods for
this setting is similar to the previously described setting with no variation in the grid
node distribution.

When the point-location scheme evaluation is performed on tetrahedral grids with a
large variation in the grid node distribution, the average number of traversed cells is
much more increased for larger grid node counts compared the other settings with little
or no variation (cp. Figure 3.12). This is due to the large variation of the tetrahedron
cell sizes as well as the ambiguity of the node-to-cell assignment. The run duration of
the methods is comparable with the previous results, whereas the Backtracking method
performs slightly better for this setting, as the kd-tree search structure is more e�cient
when indexing randomly distributed grid nodes. For this setting, the Backtracking
procedure performs fewer backtracking steps, as lesser grid nodes are located directly on
or near the splitting plane compared to a uniform grid node distribution.

32

3.3. SEARCH EVALUATION

Figure 3.12: For a large variation in the grid node distribution, the average number of
tetrahedral walk steps is increased. The runtime behavior of the Backtracking method
is slightly better, as lesser backtracking steps are performed.

Overall, it can be concluded that the given accuracy of the evaluated kd-tree traversal
methods doesn't have a great impact on the average number of tetrahedral walk steps
which are required to locate the cell that contains the query point. Even when using a
starting cell referencing the nearest grid node, as obtained by the Backtracking method,
the average number of steps is not explicitly lesser, which is due to the ambiguity of
the node-to-cell lookup table as discussed in Section 3.2.4. The exponential runtime
behavior disquali�es the Backtracking method, as the improved accuracy using this
method does not outweigh its computational cost. The Single-Pass method shows the
best performance, while the low accuracy of this method has only little in�uence on the
overall performance of the point-location scheme. A good tradeo� between accuracy,
computational cost and implementation e�ort is achieved using the Randomized method.
This procedure is almost as accurate as the Backtracking method while the measured
run duration grows only linearly with the number of grid nodes.

The implementation of the Randomized algorithm using the CUDA framework is prob-
lematic, as the framework does not provide a build-in method to generate random num-
bers on the GPU. Substantiated by the evaluation results, the Single-Pass method was
chosen for the CUDA-based implementation in order to traverse the kd-tree structure
directly on the GPU. This method shows the best runtime performance while the algo-
rithm is very straightforward to implement. As the evaluation has shown, the accuracy
of the Single-Pass method is su�cient to �nd a grid node near the query position. A fur-
ther advantage of the Single-Pass method is the reduced amount of required memory,
as the resulting cell indices can be stored directly within the leaf nodes of the kd-tree,
which dismisses the additional node-to-cell lookup table.

33

CHAPTER 3. TETRAHEDRAL GRID PROCESSING

(a) A helical synthetic �ow �eld embed-
ded in a tetrahedral grid.

(b) Particles visualizing a synthetic in-
wards spiraling �ow.

Figure 3.13: A procedure was developed for testing purposes which allows the gener-
ating of arbitrary tetrahedral grids and synthetic �ow �elds.

3.4 Synthetic Datasets

For the development and implementation of the algorithms, a method was developed,
by which di�erent tetrahedral grids and synthetic �ow �elds can be generated. This
allows the testing of the algorithmic implementation within a predictable environment,
as the synthetically generated data facilitates the comparison of the visual output with
foreseeable results. The generated tetrahedral grids are arbitrary in the number and
distribution of grid nodes, which allows to experiment with di�erently sized tetrahedral
grids and di�erent grid node distributions.

The synthetic dataset is generated by de�ning a set of points, either on a regular grid or
randomly distributed, which represents the nodes of the tetrahedral grid. The TetGen
library [WIA09] is utilized to calculate the tetrahedron cells for the point set, which
generates a Delaunay tetrahedralization based on the given point distribution. The
library also generates the index array of cell neighbors while the tetrahedralization.
Besides the tetrahedral grid, the generated synthetic dataset also includes a synthetic
�ow �eld, which is generated by evaluating the �ow de�ned by

F⃗ (x, y, z) =

 ax− by
bx+ ay

−2az + c


for each node position within the grid [KM92]. This creates a helical �ow for a = 0 and
b, c > 0, where b de�nes the intensity of the circular velocity and c de�nes the velocity
in z-direction (cp. Figure 3.13a). By choosing a > 0, the resulting �ow �eld equals an
inward spiraling �ow, with ever decreasing radius in z-direction (cp. Figure 3.13b).

34

CHAPTER 4

INTERACTIVE PARTICLE TRACING

In this thesis, interactive particle tracing is used to visualize the velocities of a simulated
�ow �eld. The �ow �eld velocity data is given by several unstructured tetrahedral grids
whereas each grid represents the state of the �ow �eld for one point time. The particles
are advected through the time-variant �ow �eld by continuously updating the particles'
positions according to the underlying �ow which depicts the behavior of the simulated
�uid indirectly by how it interacts with debris. Inspired by real �ow experiments, the
massless particles inside the simulated �ow behave like smoke particles in a real turbulent
environment, or like ink injected to water.

In an interactive visualization setting, a vast amount of particles is needed in order to
convey an adequate impression of the �ow �eld, similar to smoke, which consists of
thousands of tiny particles. This leverages the computational cost needed to compute
the advection of the particles, as the trajectory of each particle is calculated individually.
For an interactive setting, it is absolutely necessary to perform the positions' update of
the whole particle population within a short time limit. Fortunately, the position update
of each particle for one advection step can be computed independently from the others
as the movement depends solely on the velocity of the underlying �ow �eld, which allows
calculating the advection of each particle by an individual computational thread. This
type of computing is supported by today's graphics processing units which can compute
hundreds or thousands of those threads in parallel.

35

CHAPTER 4. INTERACTIVE PARTICLE TRACING

Figure 4.1: The trajectory of a particle is calculated by integrating the velocities of
the time-variant �ow �eld which are de�ned at the nodes of the tetrahedral grid.

4.1 Particle Advection

Particle advection is the process of updating the particles' positions. By repeating this
step continuously, an animation of the particles' movement is obtained which conveys a
visual impression of the underlying �ow (cp. Figure 4.1). In order to calculate the advec-
tion of the particles, the �ow velocity vector at the current position of each particle must
be known. Therefore, the �ow �eld velocities de�ned at the nodes of the unstructured
tetrahedral grid are linearly interpolated by performing the point-location scheme de-
scribed in Section 3.2 in order to locate the cell which currently surrounds the respective
particle. The natural coordinates calculated in this step are then used to interpolate of
the �ow velocity at the particle's position, as described in Equation (3.7).

The trajectory of a particle through the �ow �eld is given by the ordinary di�erential
equation (ODE)

∂x

∂t
= v(x(t), t) (4.1)

in which the initial condition x(t0) = x0 is de�ned by the seeding position of the particle
at time t0. Integrating both sides of the equation and reformulating yields

x(t+∆t) = x(t) +

∫ t+∆t

t

v(x(s), s)ds. (4.2)

This equation allows to calculate the new position of a particle which is currently
located at position x(t) after it has moved through the �ow �eld with a step size of ∆t,

36

4.2. FLOW FIELD INTEGRATION

by integrating all intermediate �ow �eld velocities between the current and the next
position. For the advection calculation, this integral term is approximated by using one
of the numerical integration methods described in the following.

4.2 Flow Field Integration

In order to update particles' positions using Equation (4.2), the �ow �eld velocities
need to be integrated. The numerical integration schemes which are regarded in this
thesis are the �rst-order Euler integration and the third- and fourth-order Runge-Kutta
integration. In addition, the embedded integration scheme proposed by Dormand and
Prince [DP80] is used to integrate the �ow �eld velocities which bases on the Runge-
Kutta integration and calculates a fourth- and �fth-order accurate solution in one step.
This embedded integration scheme can be utilized to adjust the step size adaptively, as
described in Section 4.3.

The simplest and fastest method to calculate the particles' advection is the Euler inte-
gration scheme [PTVF07], which gives a �rst-order integration of the �ow �eld velocities.
Using the Euler integration scheme, the new position of a particle is calculated by eval-
uating the �ow �eld velocity v(xt, t) at the particle's current position xt at time t. For
the particle's advection, this velocity is multiplied by the current step size ∆t and added
to the old position:

xt+1 = xt +∆t · v(xt, t) (4.3)

The velocity v(xt, t) is calculated by interpolating the �ow �eld velocities as described
in Equation (3.7). The temporal factor t is taken into account by linearly interpolating
between the velocities of the current �ow �eld state Ti and the next state Ti+1:

v(xt, t) = a(t) · vTi
(xt) + (1− a(t)) · vTi+1

(xt) (4.4)

where a(t) ∈ (0, 1] is the normalized point in time between tTi
and tTi+1

calculated as

a(t) =
t− tTi

tTi+1
− tTi

.

By using the Euler integration scheme, the integral factor of Equation (4.2) is approx-
imated only by the velocity at the current particle's position xt in order to calculate
the new position xt+1 of the particle. This approximation leads to a small error in each
advection step as the continuously distributed velocities in between the current and the
next position of the particle are not considered. As more steps are performed, this error
accumulates, which results in an inaccurate movement of the particle. The impact of
this error on the visualization of computational �uid dynamics was examined by Buning
in [Bun88].

37

CHAPTER 4. INTERACTIVE PARTICLE TRACING

0

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · ass−1

b1 b2 · · · bs−1 bs

(b′1 b′2 · · · b′s−1 b′s)

(a) General calculation scheme. The coef-
�cients b′1 . . . b

′
s describe an embedded

integration scheme.

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
3

(b) Fourth-order
Runge-Kutta
integration.

0

1
2

1
2

1 −1 2

1
6

4
6

1
6

(c) Third-order
Runge-Kutta
integration.

Table 4.1: Runge-Kutta integration scheme third- and fourth-order, described as
Butcher tableau.

The error of the Euler integration scheme can be reduced by considering the �ow veloc-
ities in between the current and the next position of the particles. This is the case when
using a higher-order integration scheme which calculates the next position of a particle
by evaluating the �ow velocities at more than one position. The most familiar method
to calculate a higher-order integration is the Runge-Kutta method [PTVF07]. For an
explicit Runge-Kutta method with s stages, the next position of a particle at position
xt is calculated by

xt+1 = xt +∆t ·
s∑

j=1

bj · kj (4.5)

where the coe�cients bj ∈ R are weights for the intermediate results kj ∈ R3 which
represent the additional �ow �eld velocities in between the current and the next posi-
tion of the particle. The more stages are calculated, the more accurate the �ow �eld
integration becomes as more �ow evaluations are performed. But this is only applicable
for up to �fth-order accurate integration schemes, as the number of required stages rises
faster than the order of the integration scheme for s ≥ 5 [But87]. The additional �ow
�eld velocity vectors are calculated as

kj = v(x
(j)
t , t+ cj ·∆t) (4.6)

in which the coe�cients cj describe how much the time t advances in each stage while
the temporal velocity interpolation is handled as described in Equation (4.4). The

intermediate positions x
(j)
t , at which the additional �ow �eld evaluations are performed,

are calculated in dependency on the former results by

x
(j)
t = xt +∆t ·

s∑
l=1

ajl · kl (4.7)

whereas the previously calculated �ow velocities kl are weighted by the coe�cients ajl.

38

4.2. FLOW FIELD INTEGRATION

Figure 4.2: The third-order Runge-Kutta integration scheme evaluates the �ow �eld
velocity at three di�erent positions.

As an example, the following calculations need to be performed in order to calculate the
new position of a particle using the third-order Runge-Kutta integration method:

xt+1 = xt +∆t · (1
6
k1 +

4

6
k2 +

1

6
k3)

k1 = v(xt, t)

k2 = v(xt +
∆t

2
k1, t+

1

2
∆t)

k3 = v(xt −∆tk1 + 2∆tk2, t+∆t)

The di�erent methods of the Runge-Kutta family are distinguished by their number
of stages s, as well as by their coe�cients bj, cj and ajl. The methods are usually
depicted using the butcher tableau [But87], where the coe�cients are arranged as shown
in Table 4.1a. Table 4.1 also shows the coe�cients for the third- and fourth-order
Runge-Kutta integration schemes. Embedded Runge-Kutta methods like the Dopri-5
integration scheme are depicted by an additional row of b′j coe�cients.

The integration of the velocities using a higher-order integration scheme introduces sev-
eral �ow �eld evaluation steps. The third-order Runge-Kutta integration scheme, for
example, evaluates the �ow �eld velocity at three di�erent positions in order to de-
termine the new position of a particle (cp. Figure 4.2). This leads to six �ow �eld
evaluations per particle in every advection step, as the velocity is interpolated between
two consecutive �ow �eld states, according to Equation (4.4).

The �ow �eld velocity evaluation is performed by the local point-location scheme de-
scribed in Section 3.2.3. For every particle, the index of the cell, in which it was lastly
located, is stored, and used as input for the �ow �eld evaluation in the next stage of
the integration. Additional tetrahedral walk steps may be required, if the natural co-
ordinates of the position to evaluate w.r.t. the current cell are not valid, according
to Equation (3.6). In this case, the natural coordinates of the adjacent cell given by

39

CHAPTER 4. INTERACTIVE PARTICLE TRACING

the worst violator, are calculated and tested. The tetrahedral walk typically requires
at most one additional step, as the positions to evaluate are quite near to the current
particle's position, except for large step sizes where several cells need to be traversed
for each evaluation. Nevertheless, the evaluation of the �ow �eld velocities at di�erent
positions is the most time-consuming process during the integration calculation even
when executed in parallel on the graphics processing unit.

4.3 Adaptive Step Size Adjustment

As unstructured grids are regarded, it is problematic to advect the particles using a �xed
value for the integration step size ∆t. Problems arise due to the di�erent sizes of the cells
that are traversed during the advection process. If the integration step size is chosen too
high, a particle might cross several cell borders at once and omits the �ow information
of those cells. This is especially a problem in parts of the domain, where particular
small cell sizes are used to simulate turbulent areas of the �ow. In such areas, the
velocities di�er highly from cell to cell and the step size needs to be adjusted according
to the current situation to achieve an accurate visualization of the �ow behavior. On the
other hand, it is feasible to choose a larger step size for some areas of the grid without
leaving out too much velocity information. An adaptive step size adjustment procedure
chooses an independent step sizes for each particle depending on the currently known
information. Facts that are used in order to choose an appropriate step size may include
the �ow �eld velocity around the position of the particle, the particle's trajectory or the
structure of the grid, especially the size of the particle's surrounding cell.

In order to achieve a plausible visualization of the particle advection, all particles must
be advected with the same step size ∆t. By adaptively adjusting the step size for
each particle, the number of advection steps per particle increases. Thus, instead of
performing one advection step with step size ∆t, n advection steps need to be performed
a step size of ∆ti, i ∈ {1 . . . n} each, so that ∆t1 +∆t2 + . . .+∆tn = ∆t.

4.3.1 Step-Doubling

The step-doubling procedure described in [PTVF07] is the simplest method to adaptively
adjust the integration step size. This procedure chooses an appropriate step size by
estimating an error value for the integration which considers the �ow �eld velocity.

As depicted in Figure 4.3, the error value for the current step size ∆t is determined as
the distance between the position x1(t +∆t) of a particle after one advection step and

40

4.3. ADAPTIVE STEP SIZE ADJUSTMENT

Figure 4.3: Adaptive step size adjustment using the step doubling procedure. The red
bar indicates the error value of the current step size when compared with two half-steps.

the position x2(t+∆t) after two advection steps with a step size of ∆t/2 each:

ϵ = ∥ x1(t+∆t)− x2(t+∆t) ∥ (4.8)

Both new position updates are calculated using one of the integration schemes described
above, e.g. the fourth-order Runge-Kutta integration. The integration step size is
adjusted dynamically by de�ning an upper threshold for the error value ϵ. If the error
value exceeds this threshold, the size of the step is halved and the �ow �eld integration
is repeated with the reduced step size. The procedure is iterated until the threshold
condition is again ful�lled. Likewise, a lower threshold is de�ned, by which the step size
is doubled. The whole step-doubling procedure is iterated until a complete advection
step of step size ∆t has been performed.

An existing integration procedure can easily be enhanced using the step-doubling pro-
cedure as it solely requires three approximations of the �ow �eld integral in order to
estimate a suitable step size for the integration. Still, the procedure requires nearly
twice the number of computationally expensive integration calculations in order to es-
timate the step size. By using the fourth-order Runge-Kutta integration scheme for
example, 11 �ow �eld evaluations are required per iteration in both current tetrahedral
grids. This number even increases, if the error value for an already reduced step size
is still higher than the threshold. The step-doubling procedure for particle tracing on
tetrahedral grids was evaluated by Kenwright in [KL95]. His results show that the per-
formance using this step size adjustment procedure is worse than using a �xed step size
of 5 steps per cell. This dismisses the step-doubling procedure for the adaptive step size
adjustment on tetrahedral grids.

4.3.2 Curvature-Based Step Size Adaption

Kenwright also presents an alternative procedure for the adaptive adjustment of the step
size called curvature-based step size adaption. This procedure estimates the integration
step size for a particle based on the particle's moving direction through the �ow �eld in

41

CHAPTER 4. INTERACTIVE PARTICLE TRACING

Figure 4.4: The curvature-based procedure estimates the step size based on the angle
between the directions of the current and the last advection step.

the previous and the current advection step. As depicted in Figure 4.4, the curvature-
based procedure calculates the path line curvature as the angle of the directions of two
successive advection steps:

cos θ =
(xi−1 − xi) · (xi − xi+1)

|xi−1 − xi| · |xi − xi+1|
(4.9)

If the calculated angle exceeds a certain threshold, the current step size is halved and the
last �ow �eld integration step is repeated with the reduced step size. With this approach
for the adaptive step size adjustment, Kenwright reported almost equal results compared
to the step-doubling procedure when the angle is kept in between 3◦ for the lower and
15◦ for the upper threshold.

As only the particles' positions of the current and the previous advection steps are
required for the step size estimation, which are generated in any case while the posi-
tions' update, no additionally gathered information is required for this adaptive step
size adjustment procedure. Hence, the number of redundant calculations is signi�cantly
reduced compared to the previously described step-doubling procedure. In regions where

Figure 4.5: The curvature-based step size adjustment procedure is not accurate for
rapidly changing �ow directions, as the step size estimation considers the �ow �eld
velocities only indirectly.

42

4.3. ADAPTIVE STEP SIZE ADJUSTMENT

Figure 4.6: Using the in-sphere procedure, the particle advection is performed for
n uniform sub-steps with an equidistant step size which is estimated by the in-sphere
radius of the surrounding cell.

the �ow is turbulent, the particle advection step size is reduced until the curvature of
the particle's trail �ts the boundary condition, which results in an adequate depiction
of the �ow in those regions.

But this method also has a severe drawback: Since the step size of the next advection
step depends solely on the angle of the particles' directions of movement, the step size
estimation is decoupled from the �ow �eld velocities which a�ect the particle's trail only
indirectly. Also, there is no indication about the error that is introduced by the current
integration step size. In regions with rapidly changing �ow directions, the step size may
not be reduced, because the particle trail's curvature still �ts the boundary condition for
the chosen step size. As an example for such a situation, Figure 4.5 shows the advection
of a particle through a turbulent �ow of constant velocity but rapidly changing direction,
which is depicted by the integral curve of the �ow �eld. In this example, the advection
of the particle using the step size estimated by the curvature-based approach does not
convey an accurate visual impression of the underlying �ow.

4.3.3 In-Sphere Step Subdivision

Another approach for the adaptive step size adjustment within tetrahedral grids, the
in-sphere procedure, is suggested by Schirski in [Sch08]. He describes a procedure which
relies solely on the topology of the tetrahedral grid in order to divide the current advec-
tion step of size ∆t into n uniform sub-steps with an equidistant step size of ti = ∆t/n
each. As depicted in Figure 4.6, the number n of uniform sub-steps is obtained from the
length of the �ow velocity vector at the particle's position multiplied by the overall step
size and divided by the insphere radius r of the current surrounding cell of the particle

43

CHAPTER 4. INTERACTIVE PARTICLE TRACING

within the tetrahedral grid:

n =

⌈
∥v(xt, t)∥∆t

r

⌉
(4.10)

This step size adjustment procedure is motivated by the fact that those regions within
the �ow �eld domain, for which a turbulent �ow is expected during the simulation phase,
are discretized by a dense grid node distribution with small cell sizes, which results in a
higher resolution of the respective regions within the tetrahedral grid. Using the insphere
radius of the surrounding cell of a particle ensures that the step size corresponds to the
actual topology of the grid at the particle's position. Regions with small cell sizes are
traversed with a smaller step size by which more advection sub-steps are performed for
a particle crossing this area. If the cells are equally shaped, the velocity is evaluated
in every cell that is traversed. The computational e�ort to determine the step size is
quite small, since the insphere radius calculation is simple and the �ow velocity v(xt, t)
at the current particle's position is evaluated regardless of which method is used for the
integration calculation.

As the factor for the uniform step subdivision depends solely on the insphere radius of
that cell which contains the position of the particle at the beginning of the sub-step
advection, an inaccurate particle advection may arise for regions of the tetrahedral grid
with highly varying cell sizes, since too few sub-steps may be performed if the particle
resides in a large cell at the beginning while the subsequent cells have a much smaller
size. Also, despite the length of the velocity vector at the current particle's position,
the �ow �eld velocities are not considered for the estimation of the number of sub-steps.
The performance of a number of uniform sub-steps using an equidistant step size for
the �ow �eld integration leads to the same problem that was already discussed for the
curvature-based approach, as the chosen step size does not depend on how the time-
variant �ow evolves while the advection sub-steps are performed. Especially in regions
with rapidly changing �ow directions, the chosen step size may lead to a non-accurate
movement of the particle w.r.t. the underlying �ow �eld (cp. Figure 4.5).

4.3.4 Dopri-5 Adaptive Step Size Adjustment

The procedures for the adaptive step size estimation presented so far have either the
drawback of a much higher computational e�ort, like the step-doubling procedure or do
not consider the �ow �eld velocities, like the curvature-based and the in-sphere proce-
dures. A reasonable adaptive step size adjustment procedure should be able to adapt
the step size to the �ow �eld velocities without introducing too much computational
e�ort.

In this thesis, the procedure of Dormand and Prince [DP80] called Dopri-5 adaptive step
size adjustment is used. This procedure utilizes an embedded Runge-Kutta integration

44

4.3. ADAPTIVE STEP SIZE ADJUSTMENT

Figure 4.7: The embedded Dopri-5 integration scheme yields a fourth- and a �fth-order
accurate solution of the �ow �eld integration in a single step. Both solutions together
are used to estimate the error of the fourth-order approximation of the �ow �eld integral.

scheme which performs seven integration stages in order to calculate a fourth- and a �fth-
order accurate approximation of the �ow �eld integral in a single step. The approach is
similar to the method of Fehlberg [Feh70] which minimizes the error of the fourth-order
solution, whereas the coe�cients of the embedded Dopri-5 integration scheme are chosen
to minimize the error of the �fth-order solution. By using the Dopri-5 integration scheme,
the �fth-order solution is used to approximate the integral term of Equation (4.2) in order
to calculate the particle advection while the fourth-order solution is used to calculate
an error value for the current step size by which the current step size is adaptively
adjusted.

The integration is performed as described in Section 4.2 by using the coe�cients pre-
sented as Butcher tableau in Table 4.2, whereas seven �ow �eld velocity evaluations are
performed in both current temporal domain states. The intermediate results of the �ow
�eld integration (cp. Equation (4.6)) are hereby weighted with either the b or the b′ co-
e�cients in order to calculate the fourth- and �fth-order accurate solutions in a single
integration step.

To adaptively adjust the step size of the current integration, an error value is derived from
both solutions of the last �ow �eld integration step. This error value describes the error
of the fourth-order accurate solution and is given by the di�erence between the fourth-
order solution xRK4(t + ∆t) and the �fth-order solution xRK5(t + ∆t) (cp. Figure 4.7):

ϵ = ∥ xRK5(t+∆t)− xRK4(t+∆t) ∥ (4.11)

An adaptive step size adjustment procedure which utilizes the embedded Dopri-5 in-
tegration scheme is presented in Algorithm 4. This procedure is generally applicable
to embedded Runge-Kutta integration schemes which calculate solutions of order p and
p + 1. For the embedded integration scheme of Dormand and Prince, the solution of
�fth-order is essentially more exact than the fourth-order solution, so that this solution
is used for the particle advection process.

45

CHAPTER 4. INTERACTIVE PARTICLE TRACING

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

(fourth-order)

35
384

0 500
1113

125
192

−2187
6784

11
84

0 (�fth-order)

Table 4.2: Coe�cients of the Dopri-5 method listed as Butcher tableau. The upper
row of b coe�cients gives the fourth- and the lower row the �fth-order accurate solution.

As input to the procedure, the user de�nes an error tolerance factor τ0, a minimal step
size hmin, a safety factor ρ ∈ (0, 1] and an increase bound η ≥ 1. In every iteration,
the procedure tries to adjust the current step size h′, so that the error value from
Equation (4.11), divided by the current step size, lies below the given error tolerance τ0.
Otherwise, the step size is halved and another iteration is performed. If the reduction
has reached the minimal step size, h′ ≤ hmin, the current step size is accepted despite the
error value in order to prevent a dead-lock situation when the error threshold condition
cannot be ful�lled by further reducing the step size. If the current step size h′ is accepted,
the �fth-order accurate solution xRK5(t+h′) of the �ow �eld integration de�nes the new
position of the particle which is used as the input position in the next iteration.

As proposed in [Mel09], the integration step size to calculate solutions of order p and
p+ 1 in the next iteration is estimated by

h′ = ρ
(τ0
ϵ
h′ p+1

)1/p

based on the current step size h′, the last error value ϵ and the tolerance factor τ0.
In order to minimize the number of repetitions, a safety factor ρ ∈ (0, 1] is multiplied
which raises the possibility that the new step size proposal is immediately accepted in
the next iteration. In the Dopri-5 adaptive step size adjustment algorithm, the equation
for the new step size estimation is enhanced, to ensure that the new value for h′ does
not lie below the minimal step size hmin. Also, if the step size increases, the growth rate
is restricted by an increase bound η ≥ 1. A typical value would be η = 2, by which the
new step size is restricted to be at most twice the size of the previous step.

To ensure the uniform movement of all particles, the procedure requires the input of the
global step size h as well as the current simulation time t by which a maximum time T

46

4.3. ADAPTIVE STEP SIZE ADJUSTMENT

Algorithm 4 Dopri-5 Adaptive Step Size Adjustment

Require: An error tolerance factor τ0.
Require: The minimal step size hmin.
Require: A safety factor ρ ∈ (0, 1].
Require: An increase bound η ≥ 1.
Require: The initial step size h and the simulation time t.

T ← t+ h
h′ ← h
while (t < T) do

calculate xRK4(t+ h′),xRK5(t+ h′) using the Dopri-5 integration scheme

ϵ← ∥ xRK5(t+ h′)− xRK4(t+ h′) ∥
if ((ϵ/h′) ≤ τ0 ∨ h′ ≤ hmin) then

x(t+ h′)← xRK5(t+ h′)
t← t+ h′

h′ ← max
{
hmin,min

{
ηh′, ρ

(
τ0
ϵ
h′ 5)0.25}}

if t+ h′ ≥ T then

h′ ← T − t
end if

else

h′ ← h′/2
end if

end while

is calculated. In every iteration, the time t is advanced by the current step size h′. If the
step size of the next iteration exceeds the maximum time T , the step size is de�ned by
h′ = T − t, by which a small additional advection step is performed in order to complete
the global advection step of step size h.

The Dopri-5 integration scheme can easily be implemented as a modi�cation of the
classic Runge-Kutta methods using the coe�cients listed in Table 4.2, while the step size
adjustment procedure using Algorithm 4 requires little more implementation e�ort.

4.3.5 Discussion

The presented adaptive step size adjustment procedure using the embedded Dopri-5
integration scheme uses an approach for the step size estimation which is similar to
the step-doubling procedure, as an error value for the current integration step size is
estimated, by which the size of the next step is adjusted dynamically. If the error
value exceeds a certain threshold, the last iteration step is repeated with a reduced step
size, until it �ts the given conditions. While the step-doubling procedure calculates the

47

CHAPTER 4. INTERACTIVE PARTICLE TRACING

Figure 4.8: By using the Dopri-5 adaptive step size adjustment procedure, the inte-
gration step size is continuously adjusted in order to achieve a highly accurate depiction
of the underlying �ow.

error value of the current integration step as the di�erence between a single advection
step and two half-steps, the Dopri-5 procedure performs an embedded Runge-Kutta
integration which yields the error value as the di�erence between the fourth- and the
�fth-order accurate solutions. Compared to the step-doubling procedure, which requires
11 �ow �eld evaluations in each integration step to calculate the error value and a
fourth-order accurate approximation of the �ow �eld integral using the fourth-order
Runge-Kutta integration, the Dopri-5 step size adjustment procedure requires only 7 �ow
�eld evaluations to calculate a �fth-order accurate solution as well as an estimation of
the error of the fourth-order accurate solution. Therefore, the Dopri-5 procedure saves
8 computationally expensive �ow �eld evaluations in total, as 14 �ow evaluations are
su�cient for the embedded Dopri-5 integration scheme to integrate the time-variant
�ow �eld in contrast to the step-doubling procedure with fourth-order Runge-Kutta
integration which evaluates the �ow �eld velocity at 22 distinct positions.

As depicted in Figure 4.8, the described step size adjustment procedure using the Dopri-5
integration scheme carefully respects the �ow �eld velocities for the estimation of an ap-
propriate integration step size. The Figure presents the previously described turbulent
�ow of constant velocity but rapidly changing direction which is depicted by the integral
curve of the �ow �eld. A continued adjustment of the current integration step size is
required to calculate the particles' movement in order to obtain a highly accurate visual
depiction of the underlying �ow. Using the Dopri-5 integration scheme with adaptive
step size adjustment, each particle advection step is performed with an integration step
size that complies with the given error tolerance of the fourth-order accurate solution.
Therefore, each advection sub-step follows the integral curve of the �ow �eld and the
depiction of the particle's position after several sub-steps leads to an accurate visual im-
pression of the underlying �ow. As already discussed, such accuracy is hardly achievable
by adjusting the step size according the curvature of the particle's trail or by using a

48

4.4. INTEGRATION PERFORMANCE EVALUATION

uniform subdivision of the advection step, without decreasing the global step size.

By using the Dopri-5 adaptive step size adjustment procedure for the �ow �eld integra-
tion, the precision of the particle's movement can be intuitively controlled by adjusting
the error tolerance factor τ0 and the minimal step size hmin. But a too strict error
tolerance leads to a much higher computational e�ort as far more sub-steps need to be
performed. This would slow down the whole particle advection process and would make
the procedure virtually useless. Therefore, besides the performances of the di�erent
integration schemes for di�erent platforms, also the impact of the adaptive step size
adjustment procedure on the overall performance is analyzed in the following section.

4.4 Integration Performance Evaluation

The described method of particle tracing in time-variant tetrahedral grids was imple-
mented to run on the CPU as well as on the GPU. Therefore, the performance of both
platforms can be directly compared in terms of performance and particle throughput.
The focus lies especially on the comparison of the di�erent integration schemes that
were used to integrate the �ow �eld velocities in order to calculate the particle advec-
tion. Depending on the order of the integration scheme, several �ow �eld evaluations
have to be performed using the point-location scheme for tetrahedral grids described in
Section 3.2.

The CPU-based implementation was designed to run on a single core. In order to obtain
the theoretical peak performance of a system, the particle throughput was measured for
a single core and then multiplied by the number of system's cores. The runtime of the
CPU-based implementation was measured on an Intel Core 2 Quad Q9550 system with
4 cores, each running at 2.83GHz, as well as on a Dual Intel Xeon E5420 system with
a total amount of 8 cores, each running at 2.50Ghz. These systems are referenced as
Core 2 Quad and Xeon MP.

The performance of the GPU-based implementation using the CUDA framework was
pro�led on a GeForce GT240 with 1GB of device memory, as well as on a Quadro FX
5800 with 4GB of memory by utilizing the CUDA Visual Pro�ler [NVI10d]. The GeForce
GT240 features 12 multiprocessors with a total amount of 96 cores, whereas the clock
rate of the processors is 1.34Ghz. This GPU represents a typical consumer model with
average performance. The Quadro FX 5800 on the other hand represents a professional
high-end graphics card, equipped with 30 multiprocessors running at 1.30Ghz and a
total amount of 240 cores. These systems are referenced as GT 240 and FX 5800.

Figure 4.9 shows the performance of the di�erent integration schemes for the described
platforms. On each platform, the particle advection was performed for several steps

49

CHAPTER 4. INTERACTIVE PARTICLE TRACING

Figure 4.9: Median performance and relative speed up of �ow �eld integration process
on various platforms using di�erent integration schemes. The particle throughput of the
Quadro FX 5800 using the Euler integration scheme tops o� at about 190M particles
per second.

using the Euler and the Runge-Kutta integration scheme of third and fourth order, as
well as the Dopri-5 integration scheme, once with and once without adaptive step size
adjustment, in order to compare the impact of the adaptive step size adjustment pro-
cedure on the �ow �eld integration performance. The performance throughput is given
as million particles per second, in order to obtain comparability with the performance
measurements of previous works, e.g. [Sch08].

For all platforms, the best performance was measured using the Euler integration scheme
as this integration scheme requires only one �ow �eld evaluation in both temporal do-
main states to calculate the new position of a particle. If a higher-order integration
scheme, like the third- or fourth-order Runge-Kutta method is used to calculate the par-
ticle advection, a higher accuracy of the particle movement is obtained, but at the cost
of a much lower particle throughput, as more computational costly �ow �eld evaluations
are required. By using the Dopri-5 integration scheme, the particle throughput is again
lower, as it performs three additional �ow �eld evaluations per temporal state compared
to the fourth-order Runge-Kutta method. The performance of the Dopri-5 integration
scheme with adaptive step size adjustment was evaluated using a maximum error tol-
erance factor τ0 = 10−4 as upper threshold for the error of the fourth-order accurate
solution of the �ow �eld integral. This very low error tolerance shows an explicit impact
on the particle throughput performance compared to the Dopri-5 integration scheme
without adaptive time step adjustment, as each �ow �eld integration step with an error
value above the tolerance is repeated with a reduced step size.

50

4.4. INTEGRATION PERFORMANCE EVALUATION

Figure 4.10: The throughput of the GPU-based implementation for di�erent integra-
tion schemes also depends on the number of particles that are advected in parallel.

Figure 4.9 also depicts the measured relative speed-up factor of the GPU-based imple-
mentation compared to the results of the CPU-based systems. This diagram shows, that
a large performance boost can be obtained by shifting computations from the CPU to
the GPU as the GPU-based implementation outruns the CPU-based implementation for
every measured integration scheme. This leads to the conclusion, that the described
tasks are very suitable to be performed on the graphics processing unit.

Another interesting fact is, that the performance of the GPU-based implementation de-
pends on the number of particles that are advected in every step. Figure 4.10 shows the
relative and absolute particle throughput for di�erent particle counts for the di�erent
integration schemes. As can be seen, a higher throughput is achieved if the integra-
tion is calculated for a larger number of particles. This is due to the overhead that
is introduced by the invocation of the CUDA-based computations, e.g. by binding the
current tetrahedral grids to the texture memory etc. If more complex computations are
performed, e.g. by using a higher-order integration scheme, the amount of overhead gets
smaller compared to the overall computational workload.

The particle throughput is also a�ected by the chosen step size of the advection step.
The absolute and relative performances of the di�erent integration schemes for an altered
step size are shown in Figure 4.11. The highest particle throughput is achieved for a
basic step size of ∆t = 0.02. If the step size is increased by a factor of 5, the performance
decreases to about 40 percent, and even more if the step size is increased by a factor of
10. The performance break-in can be explained by the increased number of cells that
are traversed during the �ow �eld velocity evaluation. If the particles are advected using

51

CHAPTER 4. INTERACTIVE PARTICLE TRACING

Figure 4.11: A larger step size reduces the particle throughput for all integration
schemes, as more cells need to be traversed while the �ow �eld evaluation. The particle
throughput of the Euler integration scheme for ∆t = 0.02 tops o� at about 190M
particles per second.

a large step size, the distance between the evaluated positions increases and therefore
longer tetrahedral walks must be performed. The average number of traversed cells for
the di�erent integration schemes and step sizes is shown in Table 4.3.

The highest performance loss for the �ow �eld integration with di�erent step sizes was
measured when performing the particle advection using the Dopri-5 integration scheme
with adaptive step size adjustment. While the overall step size is increased, the size of the
sub-steps remains constant in order to attain the desired accuracy. Therefore, much more
sub-steps need to be calculated for the global advection step, which also increases the
number of �ow �eld evaluations and therefore the computational workload. Figure 4.12
shows the average number of traversed cells as well as the average number of iterations
required for di�erent error tolerance values when using the Dopri-5 integration scheme

Integration scheme

Step size Euler RK-3 RK-4 Dopri-5 Dopri-5 ATS

∆t = 0.02 0.547 0.583 0.571 0.565 0.33844
∆t = 0.1 4.561 4.724 4.384 4.231 1.55382
∆t = 0.2 6.083 10.735 9.574 9.462 2.48518

Table 4.3: Average number of traversed cells for di�erent integration schemes and step
sizes.

52

4.4. INTEGRATION PERFORMANCE EVALUATION

Figure 4.12: Average number of traversed cells and iterations for di�erent error toler-
ance values using the Dopri-5 adaptive time stepping for di�erent global step sizes.

with adaptive step size adjustment for di�erent global step sizes. If the error tolerance
value is chosen too strict, the number of iterations rises quickly while the respective step
size tends to zero.

In conclusion, by utilizing modern programmable graphics hardware for the calculation
of the �ow �eld velocity integration, millions of new particle positions can be calcu-
lated per second, even if the described adaptive step size adjustment procedure with
controllable error tolerance is used, which gives a highly accurate solution of the �ow
�eld integral by performing several sub-steps of varying step sizes. Nevertheless, the
�ow �eld integration is the most time-consuming part of the particle tracing approach
in time-variant tetrahedral grids.

53

CHAPTER 5

CUDA-BASED GPU IMPLEMENTATION

5.1 General Purpose Computations on Graphics
Processing Units

General Purpose Computation on Graphics Processing Units (GPGPU) describes the
usage of graphics hardware for computations other than their usual purpose, the pro-
cessing of graphics. With GPGPU, all kinds of algorithms for diverse problems, e.g. in
the �eld of physics, mechanics or economy, are implemented to run on the GPU instead
of the CPU. Hereby, an advantage is taken from the rapid growth of GPU performance
due to the market demand for ever increased real-time, high-de�nition 3D graphics, e.g.
for the creation of almost photo-realistic scenes within 3D-games.

The application of GPGPU started with the introduction of the programmable graphics
pipeline, which is an extension of the standard graphics rendering pipeline (cp. Fig-
ure 5.1). This extension allows to specify vertex- and fragment shader programs within
the rendering process, e.g. by using a high level shading language like the OpenGL
Shading Language GLSL [Ros09].

For computations on the GPU, the algorithms are hereby mapped to the graphics render-
ing pipeline by de�ning graphical primitives and specifying textures for the data input.
The computations are implemented by writing vertex- and fragment shader programs
and performed by executing the rendering process. After the rendering has �nished, the
results are obtained by reading out the frame bu�er. This technique was also used in
previous works about GPU-based particle tracing [KKKW05, Sch08].

55

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.1: The graphics rendering pipeline can be modi�ed and used for GPGPU by
specifying vertex- and fragment shader programs.

Using the graphics rendering pipeline for GPU-based computations needs a high level of
abstraction, as the algorithms for a speci�c problem need be implemented as graphical
shader programs. With the increasing of GPU performance, this technique was more and
more able to boost the computational speed of various implementations for all kinds of
problems. This development was also recognized by graphics card manufacturers, which
see the chance, to place their products not only for fast graphics rendering, but also as
co-processors, e.g. to amplify video encoding performance [Ele10] or to create enhanced
physical e�ects within games [NVI10c].

In order to alleviate the usage of GPU-based computations, the graphics card man-
ufacturers developed special application programming interfaces (API), which allows
shifting calculations to the GPU without utilizing the graphics rendering pipeline. The
two largest producers of programmable graphics hardware besides Intel, NVIDIA and
AMD/ATI, each designed their own API, which was adapted to their respective hardware
speci�cations. These days, also uni�ed APIs for all recent graphics cards are available,
including OpenCL by the Khronos Group [Khr10a] and DirectCompute designed by the
Microsoft Corporation as part of their graphics API DirectX 11 [Mic10].

In this thesis, the Compute Uni�ed Device Architecture (CUDA) introduced in Novem-
ber 2006 by the NVIDIA Corporation is used to implement GPU-based calculations. The
CUDA framework was specially designed for computations on recent NVIDIA graphics
cards, which are widely used in current computer systems. For the implementation, C
for CUDA is used, which is an extension of the regular C/C++ language. There also
exists a variety of wrappers for other languages, including Java, Python, Fortran and
MATLAB. CUDA has some advantages over GPGPU calculations using graphics APIs,
as it allows random access to the graphics card memory, features fast shared memory
between threads and full support for integer and bitwise operations [NVI10a].

56

5.2. GPU ARCHITECTURE

Figure 5.2: The development of theoretical peak performance of �oating-point opera-
tions per second and memory bandwidth for CPU- and GPU processors [NVI10b].

5.2 GPU Architecture

Today's programmable graphics hardware features many-core processors with highly
parallel, multithreaded computational power, as well as high bandwidth to the onboard
graphics memory. The theoretical peak performance of �oating point and double pre-
cision operations per second of CPU- and GPU processors, as well as the maximum
bandwidth of (device-) memory is depicted in Figure 5.2, taken from [NVI10b]. It also
includes the performance of the latest generation of Fermi- (Geforce GTX 480) NVIDIA
GPUs. Of course, these values are determined by summing up the peak performances
of all available cores, a state of which is almost never achieved in practice. But, there is
a certain performance gap between GPUs and CPUs.

The performance di�erences of single-precision operations between CPUs and GPUs are
based on the distinctions of both architectures. GPUs are specialized for 3D graphics
rendering, which introduces highly parallel computations, e.g. in the calculation of
picture elements. For the graphics rendering process, it is not that relevant, how long
it takes to calculate the color of one pixel on the screen, but to calculate the whole
frame within a small period is much more important. This can only achieved by massive
parallel processing.

The architecture of current CPUs on the other hand is designed to complete a single
task as fast as possible. On modern super-scalar out-of-order CPUs, for example, the
control logic of the processor tries to �nd instructions within the program code, that
can be processed in parallel (ILP: Instruction Level Parallelism, [SL05]). Also, it is
often necessary to switch between di�erent tasks, e.g. in order to react on interrupts by

57

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.3: A schematic illustration of modern CPU and GPU architectures [NVI10a].
The GPU architecture is especially designed for computations with high arithmetic in-
tensity.

the operating system. Therefore, common CPU architectures feature large units for the
control logic, as well as big data caches, in order to switch fast between di�erent process
contexts.

In contrast to the CPU architecture, GPUs are designed for fast parallel data processing,
where a single program is executed on many data elements, rather than data caching
and �ow control. As only one program is executed at a time, there is no need for
sophisticated control logic units. For programs with a high arithmetic intensity - the
ratio of arithmetic- to memory operations - memory access latency can be hidden with
calculations instead of big data caches. Therefore, GPU-based computations are most
suitable for problems that can be divided into many independent tasks and processed in
parallel. Both architectures are schematically illustrated in Figure 5.3.

The structure of modern GPUs is build around several streaming multiprocessors (SMs),
each of which can run hundreds of computational threads concurrently. The CUDA
framework introduces an architecture called SIMT (Single-Instruction, Multiple-Thread)
describing thread-level parallelism. This is akin to SIMD (Single-Instruction, Multiple
Data) with the main di�erence that all threads of a warp have their own address counter
and register state and are therefore free to branch and execute independently. Hereby, a
warp describes the number of threads executed in parallel on a single SM, whereas the
size of a warp is equal to 32 on present GPUs. Of course, full e�ciency is only achieved,
when all threads of a warp agree on their execution path. If some threads diverge, e.g. by
a data-dependent conditional branch, they are serially executed while the other threads
are disabled until all threads converge back to the same execution path.

On the hardware level, a multiprocessor can have several active warps, between which
is switched, depending on whether a warp has active threads ready to execute. Threads
of di�erent warps on the same multiprocessor can share data via a fast, on-chip shared

58

5.2. GPU ARCHITECTURE

Figure 5.4: The CUDA architecture requires, that a problem can be partitioned into
blocks of sub-problems that can be calculated independently from each other. Then, the
time needed to solve the problem scales with the number of available processor cores.

memory. The number of warps, that can reside together on a multiprocessor hereby
depends on the usage of registers and shared memory by the threads and the register
and memory capacities available on the multiprocessor.

In order to map threads to the SMs, the threads are organized as thread blocks and all
threads of a block are expected to reside on the same multiprocessor. The capability
of the processor hereby de�nes the maximum number of threads per block. For the
execution, a block is divided into warps of 32 parallel running threads, where a block
typically has more than one warp, so that the execution of warps can overlap, e.g. to
hide memory access latency.

The block- and thread-based CUDA architecture requires, that a problem can be par-
titioned into coarse sub-problems that can be solved independently from each other by
blocks of threads. In each block, the sub-problem must again be dividable into �ner
pieces, which can be solved in parallel by all threads within the block. As an absolute
requirement, it must be possible to run each block of threads independently from the
other blocks, on any available processor core and in any order, concurrently or sequen-
tially. This ensures, that the performance of a CUDA-based program scales with the
number of available processor cores on the GPU, as long as there are enough blocks to
process (cp. Figure 5.4).

59

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.5: The CUDA programming model organizes the threads in blocks and the
blocks as grid. The threads of a block are executed in parallel by warps of 32 threads.
For each thread, a unique id is obtained by the thread index, as well as the index and
the size of its thread block.

5.3 The CUDA Programming Model

Using the CUDA programming model, GPU-based programs are implemented as C func-
tions called kernels. When such a kernel is called within the application context, it is
executed N times in parallel by N di�erent threads. For the kernel calls, a special
syntax is introduced, which de�nes, how the threads are organized in one-, two-, or
three-dimensional blocks. Within each block, the threads are references by a consecu-
tive, three-dimensional index variable.

As depicted in Figure 5.5, the blocks are again organized in a one- or two-dimensional
grid structure, by which each block gets its own index. This allows the executing of
more threads at once than would �t into a single block. Within the kernel program,
special variables allow to access the thread index w.r.t. the current block, as well as
the block index and block dimension within the grid. Therefore, the kernel can access
arrays by a consecutive, unique id for each thread, e.g. to update the position of each
particle stored in an array.

Figure 5.5 also shows the memory hierarchy of the CUDA programming model. Each
thread has its own local memory accessible only from within the thread's context. All
threads of a thread block can share data by using the per-block shared memory. The
global memory is used to share data between all blocks of the grid and is persistent

60

5.4. CUDA-BASED PARTICLE TRACING

across launches of di�erent kernels. Therefore it is possible to use within a kernel the
calculation results from a previous kernel launch.

The local- and shared memory banks are very limited in size, but they provide much
lower access latency than the global memory, as they are located on-chip of each mul-
tiprocessor. The global memory, on the other hand, o�ers a much higher capacity, but
also has high access latency. To lower the access latency, CUDA allows mapping areas
of the global memory to the on-chip texture memory unit, which acts as a cache. Then,
a read access to the global memory is served by the texture memory, if it was already
requested before. The global memory of the GPU is also accessible for the host system
via special commands in order to copy data to and from the graphics device.

5.4 CUDA-Based Particle Tracing

The CUDA architecture perfectly �ts the task of particle tracing through a time-variant
�ow �eld, as the movement of each particle can be calculated independently from the
others. This is due to the fact, that the update of the particles' positions depends solely
on the �ow �eld velocities, as depicted in Figure 5.6. By performing the whole particle
advection calculation on the GPU, the overall performance is boosted, as each position
update is calculated by a single thread and many of those threads are calculated in
parallel. The size of the thread blocks can be chosen arbitrary in order to maximize
the usage of processor capacities for various CUDA-enabled GPUs. Thus the time to
complete a single advection step for a vast amount of particles scales with the number
of available SMs.

The position of each particle is stored in an array within global memory as a vector of 4
�oating-point values per entry, holding the three dimensional components of the position
inside the domain. Within the fourth component, positive values are used as an optional
counter to limit the number of advection steps until a particle is deleted. A negative
value within the fourth component marks a particle as out-of-�eld, by which it can be
overwritten with a new particle in the next seeding phase. As the particles are stored

Figure 5.6: The update of the particles' positions depends only on the �ow �eld
velocities and can therefore be calculated in parallel for each particle.

61

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.7: All parts of the particle advection process are computed on the GPU.
Unlike previous works, this also includes the global search using a kd-tree structure for
the point location within the unstructured grids of consecutive domain states.

in the graphics device's memory, there is no need to constantly transfer their positions
to the memory of the host system and vice versa in order to visualize them. The only
exception is the interactive particle seeding part, where new the particle positions are
calculated on the host system and then transferred to the array of particle positions on
the GPU.

As illustrated in Figure 5.7, the CUDA-based particle tracing process is implemented by
four di�erent computing kernels. Whenever new particles are seeded, the indices of the
surrounding cells of their positions are computed using the two-phase scheme described
in Section 3.2 and stored within extra arrays in global memory for each current time
step. The particles' positions array as well as the arrays of cell indices are continuously
updated while the particle advection process.

The point-location scheme is implemented as two kernel programs, one for the kd-tree-
based nearest-grid-node search and another one for the tetrahedral walking procedure.
The kd-tree traversal is hereby implemented using the Single-Pass method, as it o�ers
the best performance while the accuracy is not explicitly worse than using another search
method (see Section 3.3). Also, some device memory and transfer time can be saved by
storing the resulting cell indices directly within the leaves of the kd-tree, which makes
is unnecessary to transfer and store the node-to-cell lookup table.

62

5.4. CUDA-BASED PARTICLE TRACING

Figure 5.8: The positions of particles that have left the �ow �eld are marked as out-
of-�eld. If all particles of a partition of 32 positions are marked, the whole partition is
overwritten by newly seeded particles within the next seeding phase.

The particle advection process is also divided into two phases. In the �rst phase, the
particles' positions are used as input for the �ow �eld integration, which calculates a
velocity vector for each particle and stores the results in an additional array. Hereby,
one computing kernel was implemented for each integration method that was described
in Section 4.2 including the adaptive step size adjustment procedure using the embedded
Dopri-5 integration scheme. In each �ow �eld integration kernel, the velocities within
both current time steps are evaluated either once using the Euler integration scheme
or several times using a higher order integration scheme while the �ow �eld evaluation
is embedded into a point location scheme similar to the one described in Section 3.2.3.
Particles that could not be located during the �ow �eld integration are marked as out-
of-�eld. Also in each stage of the integration, the velocities are interpolated according to
the progress of time. For the Dopri-5 adaptive time stepping method, an additional array
within global device memory is used to store the size of the last regular sub-step for each
particle (not the last performed step, which is usually very small), which acts as input for
the next particle advection step. In the second phase of the particle advection process,
another kernel program updates the particles' positions by loading their positions from
global memory and adding to each position the respective previously calculated velocity
vector multiplied by the current step size. Particles that were marked as out-of-�eld
during the �ow �eld integration are deleted by placing them to a region out of sight.

As the number of positions within the particles' array is constant, the positions of deleted
particles are re-used, in order to keep the total amount of particles within the bounds
of the array. Therefore, the position update kernel records free partitions within the
position's array where all particles have been deleted. As depicted in Figure 5.8, the
array is divided into partitions of 32 particles, which matches the size of a warp of
concurrently updated positions. To detect whether all particles within a partition are
marked as out-of-�eld, a Boolean value is declared in shared memory, which is initially
set to 1. If one of the threads within a warp detects an active particle to update, the
value is set to 0, indicating that this block of particles is still occupied. As soon as the

63

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.9: The time step data of all regarded domain states is loaded to the host's
memory �rst and then streamed continuously the device's memory, including the addi-
tional overhead for the two-phase point location scheme.

warp �nishes, the �rst thread copies the state of the Boolean value from shared memory
to an array of occupied blocks in global memory. As depicted in Figure 5.7, this array of
occupied blocks is transferred to the host system's memory every time new particles are
created in order to distribute the new particles to unoccupied blocks within the array
of particles in global device memory. This proceeding allows �lling up orphaned regions
within the particles' array in order to maintain a dense distribution of positions.

Under normal circumstances, the device's global memory is not capable of holding the
entire time-variant dataset o� all time states, including the additional overhead of the
kd-tree search structure and the cells' neighbors. The host system in contrast features a
much higher memory capacity with additional background storage in form of hard disk
drives. Therefore, the complete dataset is loaded into the memory of the host system
�rst and then transferred continuously to the device's global memory (cp. Figure 5.9).

In order to calculate the particle advection through the time-variant �ow �eld on the
GPU, the partial dataset of at least two consecutive time steps must be available in the
device's memory, each given as a tetrahedral grid with embedded velocities as well as
the index structures for the point location. The velocities of those two time steps are
linearly interpolated while the �ow integration to account for the time-varying nature
of the �ow �eld according to Equation (4.4). For the data transfer from the host to the
graphics device, the dataset of a third time step is hold in the global memory of the
GPU, which bu�ers the upcoming state of the domain in the next time step. Whenever

64

5.5. HOST SYSTEM IMPLEMENTATION

a new temporal state of the domain is reached, the references to the two current time
steps are updated and the particles are located within the new dataset of the third time
step. This is done by invoking the point location kernel for the whole particle population
in order to update the cell index of each particle in the new time step as starting point
of the tetrahedral walk performed by the �ow �eld integration. After that, another time
step dataset is transferred to the global device memory, which replaces the data of the
previous time step.

On devices that support concurrent copy operations and kernel executions, the data
transfer is performed asynchronously with the execution of the particle location and the
advection kernels. For the concurrent operations, two di�erent computing stream ids are
utilized, one for the kernel execution and another one for the data transfer. Whenever
the references to the current time steps are updated, both stream ids are swapped, to
ensure that the asynchronous transfer of the next time step has �nished. To perform the
data transfer asynchronous, the dataset of the next time step on the host's side needs
to be located within page-locked memory, a special kind of memory resource provided
by the operating system. This kind of memory is a very limited resource of the host
system and therefore allocated dynamically and �lled by copying the time step data
from pageable to page-locked memory before starting the transfer.

The �ow �eld evaluation requires fetching node- and cell data from randomly distributed
locations within the global device memory. As this random access would typically lead
to high memory latency and therefore reduced performance, the data of both current
time steps is bound to texture memory in order to cache reads from the global memory.
Hereby, advantage is taken from the fact, that particles, which were seeded together,
have similar trajectories through the �ow �eld and therefore cross the same cells within
both tetrahedral grids. Hence, caching the data for the nodes, velocities and neighbors
of those cells is highly e�cient and leads to improved performance and higher particle
throughput.

5.5 Host System Implementation

The software implementation of the methods presented in this thesis is divided into
CUDA-based components running on the GPU, which perform most of the calculations
including the point location, the particle advection and the �ow �eld integration, as well
as several components running on the host system. Those components mostly handle
the data loading, the control of the data �ow and the invocation of CUDA computing
kernels.

65

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

5.5.1 Data Flow Controller

The data �ow controller is the central component of the host system implementation.
It controls the whole data �ow of time step data to the GPU, handles the visualization
time and steers the CUDA-based computations. This component provides functions for
adding time step data and binding those data to a certain point in time. The time step
data hereby consists of an unstructured tetrahedral grid, a kd-tree, which indexes the
nodes of the tetrahedral grid and the indices of the neighboring cells for each tetrahedral
cell. The data�ow controller invokes the kernel for the location of newly seeded particles
within both current time steps and the kernel which calculates the advection of the
particles with the chosen step size using one of the implemented integration schemes.

By binding each time step data to a speci�c point in time, the intervals between the
temporal domain states can be arbitrarily chosen. The data �ow controller handles
the progress of visualization time during the particle advection and decides, which time
step data is actually used for the temporal interpolation of the time-variant �ow �eld.
Therefore, three consecutive time steps on the GPU are referenced: The two current
time steps Ti and Ti+1 as well as the next time step Ti+2 (cp. Figure 5.10). In Addition,
the data �ow controller holds the references to the respective cell indices of the particles
for each time step (cp. Figure 5.9). While the time steps Ti and Ti+1 are used for the
particle advection through the time-variant �ow �eld, the reference to the next time step
Ti+2 is used to simultaneously transfer new data to the GPU.

If the time intervall of the current advection step crosses the point in time de�ned by
Ti+1, the advection step is divided into two half-steps. As soon as the �rst advection step
within both current time steps Ti and Ti+1 has �nished, the references to the time step
data on the GPU are updated as Ti = Ti+1 and Ti+1 = Ti+2. Then, the point-location
kernel is executed to update the cell indices of the particle population within the new
current time step Ti+1 and the second advection step is performed on the new temporal
domain states. The former time step Ti is now referenced as Ti+2 and, as it is no longer
used, overwritten by the data of a new time step during the transfer to the GPU. If the
visualization time crosses the point in time de�ned by the last available time step, the
visualization time is reset and the �rst three time steps T0, T1 and T2 are transferred
from the host system to the device memory in order the reset the visualization.

For each particle advection step, also several constant values are transferred to the
constant device memory, including the current visualization time and the current step
size. For the temporal interpolation between the current time steps Ti and Ti+1, also the
normalized time and the normalized step size are copied, as these values are only known
within the context of the data �ow controller. The value of the normalized step size
is hereby needed to advance the time between the stages of a higher order integration
scheme.

66

5.6. RENDERING

Figure 5.10: On the host side, the mesh loader component loads the time step data
from mass storage into the host system's memory, while the data �ow controller handles
the data transfer to the GPU.

5.5.2 Time Step Loading and Processing

The mesh loader component was also implemented to run on the host system. This
component is used to load unstructured tetrahedral grids from �les on the hard disk into
the host's memory, where each tetrahedral grid is internally represented by a set of grid
nodes, the velocities de�ned at the grid nodes and the tetrahedron cells, as described in
Section 3.1. Several �le formats for unstructured tetrahedral grids are supported by the
mesh loader including the vtkUnstructuredGrid �le format de�ned by the Visualization
Toolkit VTK [Kit10] as well as the �le format of the TetGen library [WIA09].

For each loaded tetrahedral grid, the kd-tree index structure and the neighboring cell
information are calculated if required and stored according to the �lename of the grid.
The mesh loader also recognizes previously calculated search structures by the �lename
of the tetrahedral grid and loads them as well, which speeds up the loading process. As
depicted in Figure 5.10, the loaded tetrahedral grid together with the search structure
is internally represented as the data of one time step and registered within the data �ow
controller by specifying the point in time within the simulation time frame, which is
described by the time step.

5.6 Rendering

The described �ow �eld visualization process requires the depiction of several graphical
elements, including the �ow �eld domain and the animation of particles, which are used
visualize the time-variant �ow. In addition, an illustration is given of those tetrahedron
cells, which are traversed by the particles while their advection. The whole rendering
process is guided by the OpenGL graphics library [Khr10b].

67

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.11: The ViSTA VR Toolkit runs on the visualization cluster master and drives
several rendering nodes in order to create the stereoscopic projection of the immersive
display system.

5.6.1 Virtual Environments and Immersive Display Systems

In this thesis, the ViSTA Virtual Reality Toolkit [Vir09] is used for the continuous de-
piction of the particle movement through the time-variant �ow �eld, which also allows
the application of the given visualization process within an immersive virtual reality
setting. Immersive display systems hereby provide a stereoscopic projection, which is
dynamically adjusted to the position of the viewer by utilizing a head-tracking device.
This yields a holographic depiction of the scene under investigation and provides addi-
tional depth information to the viewer. Figure 5.11 shows a schematic illustration of an
immersive display system, driven by several rendering nodes which are synchronized by
a visualization cluster master system.

The fast drawing of particles using standard billboard rendering techniques is problem-
atic for immersive display systems, as those billboards are typically aligned parallel to
the viewing plane. In an immersive virtual reality setting using stereoscopic projection,
the viewer is relatively close to the projection plane, so that the projective distortion
and angular error become more apparent and the �at nature of the billboards can be
recognized more easily. In his Ph.D. thesis [Sch08], Schirski proposed, that this problem
can be avoided by aligning the billboards to the viewer instead. His approach was also
implemented in the Vista VR Toolkit and is used in this thesis for the depiction of parti-
cles within the immersive virtual reality setting. In order to render the particles within
this context, the positions of the particles are stored as a vertex bu�er object (VBO) on
the GPU, which yields high rendering performance. In order to update the particles'
positions by the respective CUDA kernels, the VBO is registered as a cudaGraphicsRes-
source and mapped to an array for the particle advection.

The ViSTA VR toolkit also supports several VR devices, e.g. the SpaceNavigator for
easy navigation within the scene, as well as tracking devices which provide an intuitive

68

5.6. RENDERING

Figure 5.12: Interactive �ow �eld exploration in an immersive virtual reality setting.

user interface for the seeding of particles within the �ow �eld domain (cp. Figures 5.12
and 5.15).

5.6.2 Graphical Representation of the Flow Field Domain

As shown in Figure 5.13, the graphical output also contains an illustration of the current
�ow �eld domain, which is given by the outer faces of one of the current tetrahedral
grids. The outer faces depict the domain as a wireframe model whereas the backfaces
are optionally drawn as solid triangles (cp. also Figure 1.2 on page 5).

The list of outer faces is obtained from the mesh loader component, which tests for each
tetrahedron cell while the loading or calculation of the cell neighborhood information
whether one of the cell neighbors is unde�ned. The vertices of respective tetrahedron
cell face are copied to an additional VBO on the GPU, whereas also the per-vertex face
normals are calculated and stored.

5.6.3 Depiction of the Traversed Cells

Attempts to also visualize the cells of the current tetrahedral grid by simple lines have
not shown pleasant results, as many of those lines overlap and single cells are not rec-
ognizable, which makes this approach virtually useless. Therefore, another approach

69

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.13: A graphical representation of the domain is given by the external faces
of the tetrahedron grid. The time-variant �ow �eld is visualized by particles seeded at
arbitrary positions within the �ow �eld domain.

was created, by which only those cells are visualized, which are traversed during the
tetrahedral walks of the point location and the �ow �eld evaluation (cp. Figure 5.14).

The depiction of the traversed cells gives a direct visual feedback of the performed
calculations on the GPU and had been especially useful to detect implementation faults.
Also, an illustration of the di�erent cell sizes and the distribution of the cells at di�erent
parts of the tetrahedral grid can be obtained by seeding particles in the respective
areas.

As the traversed cells would typically overlap each other, it was decided to render those
cells transparently. Therefore, the cells need to be depth-sorted and rendered in the
right order. As the depth sorting by the centers of the cells is performed on the host
system, the indices of the traversed cells need to be transferred to the host memory.
After the sorting, the traversed cells are stored in an index bu�er object that describes
each tetrahedron cell by four triangles as well as a color index bu�er, which provides
alternating colors for the faces. The cells are rendered back-to-front, at �rst as triangle
lines and then as �lled triangle polygons with alpha-blending enabled, which yields the
transparent appearance.

Of course, this approach could be much improved in terms of performance by performing

70

5.7. DISCUSSION

Figure 5.14: The cells of the tetrahedral grid are visualized by rendering only those
cells that are traversed during the tetrahedral walk.

the sorting procedure to the GPU, which would also avoid the time-consuming transfer of
data from the device to the host and vice versa. But, for small amounts of traversed cells,
this already gives quite a good impression without consuming too much performance.

5.7 Discussion

By using the CUDA Framework, the particle advection process could be shifted to the
GPU, where it pro�ts from the fast parallel data processing architecture of today's pro-
grammable graphics hardware. Once the CPU-based implementation was written using
the C++ language, it could be ported without e�ort to the CUDA programming model,
as kernels are written in CUDA-C, a subset of the C/C++ language. Of course, there are
some di�erences concerning both architectures, especially the memory hierarchy model
and the massive multithreaded environment of the CUDA programming model, which
had made it necessary to rewrite some parts of the implementation.

One of the major drawbacks when using the CUDA framework was the lack of suitable
software for debugging purposes. The CUDA debugger cuda-gdb for example, which is a
console debugger for GPU-based computations under Linux, requires exclusive access to
the graphics device and is therefore not capable of running simultaneously to a window
server like X11.

71

CHAPTER 5. CUDA-BASED GPU IMPLEMENTATION

Figure 5.15: The seeding of particles by means of a tracking device with full six-degrees-
of-freedom provides a highly intuitive user interface for the interactive exploration of the
�ow �eld.

72

CHAPTER 6

RESULTS

The GPU-based implementation described in the previous chapter was chie�y devel-
oped and tested using synthetic tetrahedral grids and �ow �elds that were generated
as described in Section 3.4. This proceeding has the advantage, that the visual result
of the particle trajectories can be compared to the predictable behavior of an arti�cial
�ow �eld. The described methods were also tested and evaluated on several real-world
time-variant datasets. The dataset of a real-world simulation usually introduces a much
higher number of grid nodes and tetrahedron cells compared to a synthetic dataset, as
well as a sophisticated domain structured and a turbulent �ow �eld.

This chapter describes the Engine dataset as an example of a real-world �ow �eld simula-
tion. While the complete dataset together with the additional search structure overhead
has a size of 2.2 GB, which exceeds to memory capacity of most today's GPUs, the
simulation is divided into several temporal domain states, which can be continuously
transferred to the GPU, where the time-variant �ow �eld is visualized by the described
particle tracing approach.

While the previous chapters mostly describe each part of the implementation in detail,
this chapter regards the entire procedure and presents an analysis of the approach in
terms of usability and performance.

73

CHAPTER 6. RESULTS

6.1 System Overview

The approach of particle tracing in time-variant tetrahedral grids presented in this thesis
allows the interactive exploration of time-variant �ow �elds given by several tetrahedral
grids resulting from real-world simulations. The user can seed particles at an arbitrary
position within the �ow �eld domain, which are immediately taken away by the �ow.
This proceeding is especially useful in an immersive virtual reality environment, where
the particles are seeded by a tracking device with six degrees-of-freedom. The stereo-
scopic projection of the virtual environment as well as the dynamic adjustment of the
visualized scene using head tracking give an additional depth information to the user
and allows him to immerse into the �ow �eld visualization.

To achieve interactive frame rates while visualizing the time-variant �ow �eld using par-
ticle tracing, the integration of the �ow �eld as well as the movement of the particles are
calculated entirely on the GPU using the CUDA framework, as described in Section 5.4.
Especially the calculation of the �ow �eld integration experiences an immense speed-
up when shifted to the graphics device, as the procedure �ts well the massive parallel
capabilities of present programmable graphics hardware (cp. Section 4.4).

Several computation kernels were implemented for the di�erent integration schemes,
which are distinguished by their order and can be dynamically replaced while the visu-
alization proceeds. For particular precise visualization concerns, also an adaptive step
size estimation procedure was implemented, using the Dopri-5 embedded integration
scheme with adjustable error tolerance in the distance of the fourth- and �fth-order
accurate integration results (cp. Section 4.3).

Unlike previous works, this thesis describes particle tracing on the original or decimated
dataset of time-variant tetrahedralized domains, which change their appearance over
time. To deal with such dynamically changing domains, the point-location scheme de-
scribed in Section 3.2 was implemented to run entirely on the GPU, which allows to
perform the location of many query positions in parallel. The procedure is hereby di-
vided into two phases, a global search phase, which yields the rough position of the
surrounding cell by traversing a kd-tree and a local search phase, which performs a
short tetrahedral walk in which the cell neighborhood information is used to navigate
through the unstructured grid.

For the traversal of the kd-tree, three methods were compared in terms of accuracy,
runtime behavior and implementation e�ort, in order to decide which method is most
suitable for the GPU-based implementation. As stated in Section 3.3, the Single-Pass
method hereby �ts best the requirements, as it shows the highest performance while also
giving good results in terms of the described accuracy metric.

74

6.2. THE REAL-WORLD ENGINE DATASET

Figure 6.1: The Engine dataset consists of 62 single states. Each state is discretized
by a tetrahedral grid with additional overhead introduced by the search structure.

6.2 The Real-World Engine Dataset

The methods presented in this thesis consider time-variant domains with di�erent tem-
poral states, where each state in time is discretized by an unstructured tetrahedral grid.
To test the methods on real-world simulations, the Engine dataset [Abd98] was cho-
sen, which contains the simulation results for the intake and compression strokes of a
four-stroke internal combustion engine, courtesy of the Institute of Aerodynamics (AIA)
at RWTH Aachen University (cp. also Figure 2.3 on page 9). This dataset was origi-
nally simulated using a multi-block grid and later converted into a series of tetrahedral
grids.

The Engine dataset describes a domain which changes its appearance over time. It is
de�ned by 62 single domain states, whereas each state is given by a tetrahedral grid and
embedded �ow �eld velocities, de�ned at the nodes of the grid. All temporal states of
the Engine dataset together describe a time-variant tetrahedral grid with an embedded
unsteady �ow �eld. Figure 6.1 shows the �le size of each domain state as well as the
additional amount of memory required per state, to store the search structures needed
for the point location within the unstructured grid. With approx. 32%, most of the
overhead is added by the indices of the cell neighbors, which are needed to navigate
through the grid during the tetrahedral walk. The kd-tree index structure needed to
perform the global search on the GPU on the other hand requires only approx. 6.5% of
additional memory per domain state.

The �rst half of domain states of the Engine dataset simulates the intake stroke, in
which the size of the combustion chamber increases from state to state, as the piston
moves down. Also simulated in this phase is the movement of two engine's valves,
which unbolt to induct the combustible mixture and then close again to facilitate the

75

CHAPTER 6. RESULTS

Figure 6.2: A diagonal cut through one of the engine's states shows the di�erent
tetrahedron cell sizes used for the domain discretization. Especially small cells were
used to simulate the injection �ow around the opening and closing valves.

compression stroke. While the valves are opened, the downstroke of the piston reduces
the pressure inside the cylinder, which leads to a highly turbulent �ow created by the
combustible mixture rushing into the combustion chamber.

The compression stroke of the internal combustion engine is simulated by the second
half of domain states. In this phase of the four-stroke cycle, the piston moves up again,
compressing the injected fuel-air mixture, which reduces the size of the combustion
chamber in each new state. The valves are no longer simulated in this phase, as they
are closed anyway while the compression stroke, by which the amount of nodes and cells
required for the discretization is additionally reduces.

The domain of the Engine dataset is discretized using several unstructured tetrahedral
grids with highly varying cell sizes. Figure 6.2 shows a diagonal cut through one of the
engine's states as well as a detailed view of the section around the valves. While the
distribution of the grid nodes inside the combustion chamber is mostly uniform, leading
to homogeneous tetrahedron cell sizes, small cells are used to discretize the area around
the moving valves, as strong �ow �eld velocities were calculated by the simulation within
this section and the position of the valves dynamically changes.

The number of grid nodes and tetrahedron cells changes with the growing and shrinking
of the combustion chamber. At its largest extension, the domain is discretized using
201K grid nodes and 1.15M cells, whereas the �rst domain state is given by 97K nodes
and 540K cells. With the changing number of cells in each state, also the indices of the
cells change. Hence, also the indices of surrounding cells of positions within the domain
change whenever a new domain state is reached, which makes it necessary to locate the
cells of those positions within the new grid.

76

6.3. INTERACTIVE EXPLORATION BENCHMARK

Figure 6.3: The interactive exploration benchmark is performed by creating di�erent
particle populations within the domain, which are tracked over several advection steps.

6.3 Interactive Exploration Benchmark

The approach of particle tracing in time-variant tetrahedral grids presented in this thesis
is suitable for dynamically changing domains with di�erent cell indices in each state.
This was achieved by performing the point location entirely on the GPU, which allows
updating the cell indices of a huge particle population within very short time, due to
the parallel computation capabilities of present graphics devices, which performs many
point-location queries concurrently.

In order to evaluate the usability of the presented �ow �eld visualization approach for in-
teractive exploration of the real-world Engine dataset, the performance was benchmarked
for di�erent amounts of particles. A good usability is hereby achieved at interactive ren-
dering frame rates by simultaneously tracing of a vast amount of particles through the
�ow �eld.

The benchmark was performed by creating di�erent particle populations within the
engine's combustion chamber using a cubic particle seeding strategy. As depicted in
Figure 6.3, the particles are tracked over several advection steps in order to visualize the
turbulent �ow �eld inside this part of the domain.

77

CHAPTER 6. RESULTS

Figure 6.4: The Quadro FX 5800 GPU gives very high frame rates while tracing
di�erent populations up to 500K particles through the �ow �eld. The run duration of
the CUDA Kernels hereby scales with the number of particles.

The procedure was repeated several times for up to 500K particles while recording the
average frame rate in each iteration. The positions of the particles were hereby updated
15 times per second, which yields a smooth animation of the particles' movement. Also,
the average run duration of the di�erent computing kernels was recorded using the CUDA
Visual Pro�ler [NVI10d]. The results of the benchmark are presented in Figure 6.4 for
the Quadro FX 5800 and Figure 6.5 for the GeForce GT 240. The peak frame rate hereby
does not exceed a certain limit, as a speci�c developer driver is required for CUDA-based
calculations, which is optimized for fast calculations rather than high frame rates.

While the �ow �eld integration and the position update are executed many times for each
time step, the location of the entire particle population is only performed whenever a new
temporal state of the domain is reached. The average run duration of the search kernels
hereby depends only on the amount of particles that needs to be located within the new
tetrahedral grid and is independent from the chosen integration scheme. As the pro�ling
shows, the GPU-based point-location scheme presented in this thesis, which utilizes a
kd-tree structure for the proposed Single-Pass tree traversal method in the global search
phase, is capable of updating the cell indices of a huge particle population within in
an instant. Even on the middle-class Geforce GT240, the location of a population of
200,000 particles within the tetrahedral grid took only about 8 milliseconds in total.
In average, the most computing time is spent on the �ow �eld integration within the
tetrahedral grid, especially when using the highly accurate Dopri-5 adaptive step size
adjustment procedure

78

6.3. INTERACTIVE EXPLORATION BENCHMARK

Figure 6.5: Although the GeForce GT240 only has 12 CUDA cores, the benchmark
still reaches interactive frame rates for up to 100K particles. The Dopri-5 integration
with adaptive time stepping of 200K particles tops-o� at 47 msec.

Despite the computations concerning the continuous particle movement, some time is
also required to transfer the time step data to the GPU. The relative GPU usage of
this data transfer compared to the other computations is shown in Figure 6.6 for the
tracing of di�erent particle populations over 400 advection steps and 8 di�erent domain
states. A synchronous host-to-device transfer is hereby performed at the beginning of
the visualization process on order to copy the data of the �rst two time steps, while the
succeeding time steps are transferred asynchronously. As can be seen, the major work-
load is due to the �ow �eld integration process which introduces several computationally
expensive velocity evaluations in both current tetrahedral grids.

While the described benchmark creates particles only once at the beginning of the ad-
vection process, the continuous seeding of particles requires little more e�ort, as the
seeded particles need to be located within both current time steps. While the bench-
marked GPUs support the execution of only a single computing kernel at once, the
newest generation of Fermi-based NVIDIA GPUs is capable of executing several kernels
concurrently using di�erent computing streams [NVI10b]. Therefore, the point-location
of newly created particles could be performed simultaneously to the calculations intro-
duced by the particle advection process.

79

CHAPTER 6. RESULTS

Figure 6.6: With an increasing number of particles, the major workload of the particle
advection process results from the �ow �eld integration, while the time needed to transfer
the time step data to the GPU remains constant.

80

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary and Conclusion

This thesis presented an e�cient method for the tracing of massless particles through
an unsteady �ow �eld embedded in several tetrahedral grids describing the progression
of a time-variant domain, in order to provide an adequate visualization of the original or
decimated �ow �eld data resulting from real-world simulations. The major workload of
the particle advection process was shifted to the GPU by using the CUDA framework in
order to exploit the massive parallel computation capabilities of present programmable
graphics hardware.

The nature of the regarded �ow �eld domains requires with the progression of visual-
ization time the repeated location of particle data within consecutive temporal domain
states. The e�cient two-phase point-location scheme presented in this thesis is entirely
performed on the GPU, including the traversal of a kd-tree in the broad phase. As ex-
periments have shown, it is hereby su�cient to traverse the tree only once and additional
passes result in only small lesser e�ort in the narrow phase.

For highest demands on the accuracy of the particle movement, an adaptive step size
adjustment procedure was presented, which utilizes the embedded Dopri-5 integration
scheme. The accuracy of the integration can be intuitively controlled by an adjustable
error tolerance value for the fourth-order accurate solution of the �ow �eld integral.

By utilizing the ViSTA VR Toolkit for the visual depiction of the particles, the time-
variant �ow can be interactively explored within an immersive Virtual Reality environ-

81

CHAPTER 7. CONCLUSION AND FUTURE WORK

ment, which also provides an intuitively to handle user interface. Based on the bench-
mark results of the real-world Engine dataset, up to 500,000 particles may be seeded and
advected at interactive frame rates using professional graphics hardware, which should
be enough to �ll up even large scaled �ow �eld domains.

7.2 Future Work

As a perspective for future work, the visual appearance of the particles may be enhanced
in order to achieve a depiction of the �ow based on the model of smoke in real-world
experiments. This would require additional computational e�ort, as the particles need
to be depth-sorted, while an appropriate smoke-like visual appearance requires also
sophisticated calculations for the self-shadowing of the particle cloud.

The major workload of the particle advection process results from the integration of
the time-variant �ow �eld, as the integration requires several �ow �eld evaluations,
which are calculated by interpolating the velocities de�ned at the nodes of the grid.
For larger particle populations, almost the entire computing time is spent on this task,
as pro�ling of the advection process has shown. The calculations may be enhanced by
pre-calculating and storing the per-cell matrices used for the calculation of the natural
coordinates which results in additional memory requirements on the graphics device.
As the CUDA framework allows distributing thekernel-based computations among sev-
eral CUDA-enabled devices, a larger improvement of integration performance may be
achieved by utilizing additional graphics hardware.

Based on the evaluation of the GPU-driven �ow �eld integration process, it should be
possible to generate streak surfaces for the time-variant �ow at interactive frame rates,
which would yield an additional visual impression of the �ow behavior over time but
would also require additional considerations on the generation of the surface geometry.

The small amount of graphics memory compared to present host systems allows the
examination of only those datasets that �t the limited memory capacity. For larger
datasets, a demand-driven data-reduction procedure is required in order to decimate the
given dataset to a manageable size, which may also include a region-of-interest speci�ed
by the user.

82

BIBLIOGRAPHY

[Abd98] Aschaf Abdelfattah. Numerische Simulation von Strömungen in 2- und 4-
Ventil-Motoren. PhD thesis, RWTH Aachen University, 1998.

[Ben90] Jon Louis Bentley. K-d trees for semidynamic point sets. In SCG '90:
Proceedings of the sixth annual symposium on Computational geometry,
pages 187�197, New York, NY, USA, 1990. ACM.

[BFTW09] K. Buerger, F. Ferstl, H. Theisel, and R. Westermann. Interactive streak
surface visualization on the GPU. IEEE Transactions on Visualization and
Computer Graphics, pages 1259�1266, 2009.

[BPSS02] Dirk Bauer, Ronald Peikert, Mie Sato, and Mirjam Sick. A case study in
selective visualization of unsteady 3d �ow. In VIS '02: Proceedings of the
conference on Visualization '02, pages 525�528, Washington, DC, USA,
2002. IEEE Computer Society.

[Bun88] Pieter G. Buning. Sources of error in the graphical analysis of cfd results.
J. Sci. Comput., 3(2):149�164, 1988.

[But87] J.C. Butcher. The numerical analysis of ordinary di�erential equations:
Runge-Kutta and general linear methods. Wiley-Interscience New York,
NY, USA, 1987.

[CM02] P. Chopra and J. Meyer. Tetfusion: an algorithm for rapid tetrahedral
mesh simpli�cation. IEEE Visualization, 2002. VIS 2002, pages 133�140,
2002.

83

BIBLIOGRAPHY

[Dev98] Nicolas Devillard. Fast median search: an ansi c implementation. Website,
1998. http://ndevilla.free.fr/median/median.pdf.

[DP80] J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae.
Journal of Computational and Applied Mathematics, 6(1):19 � 26, 1980.

[Ele10] Elemental Technologies Inc. badaboom media converter. Website, 2010.
http://www.badaboomit.com.

[Feh70] E. Fehlberg. Klassische Runge-Kutta-Formeln vierter und niedrigerer
Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf
Wärmeleitungsprobleme. Computing, 6(1):61�71, 1970.

[GLT+06] Christoph Garth, Robert S. Laramee, Xaviar Tricoche, Jürgen Schneider,
and Hans Hagen. Extraction and visualization of swirl and tumble motion
from engine simulation data. In The Topology-Based Methods in Visualiza-
tion Workshop, 2006, 2006.

[GTSS04] C. Garth, X. Tricoche, T. Salzbrunn, and G. Scheuermann. Surface tech-
niques for vortex visualization. In Eurographics - IEEE TCVG Symposium
on Visualization, May 2004.

[KGJ09] H. Krishnan, C. Garth, and K.I. Joy. Time and streak surfaces for �ow
visualization in large time-varying data sets. IEEE Transactions on Visu-
alization and Computer Graphics, 15(6):1267�1274, 2009.

[Khr10a] Khronos Group. Opencl - introduction and overview. Website, June 2010.
http://www.khronos.org/opencl.

[Khr10b] Khronos Group. The opengl graphics library. Website, 2010.
http://www.opengl.org.

[Kit10] Kitware Inc. The VTK User's Guide. Kitware Inc., 11th edition, March
2010.

[KKKW05] Jens Kruger, Peter Kipfer, Polina Kondratieva, and Rudiger Westermann.
A particle system for interactive visualization of 3d �ows. IEEE Transac-
tions on Visualization and Computer Graphics, 11(6):744�756, 2005.

[KL95] David N. Kenwright and David A. Lane. Optimization of time-dependent
particle tracing using tetrahedral decomposition. In VIS '95: Proceedings
of the 6th conference on Visualization '95, page 321, Washington, DC,
USA, 1995. IEEE Computer Society.

84

BIBLIOGRAPHY

[KL96] David N. Kenwright and David A. Lane. Interactive time-dependent par-
ticle tracing using tetrahedral decomposition. IEEE Trans. Vis. Comput.
Graph., 2(2):120�129, 1996.

[KM92] David N. Kenwright and G. D. Mallison. A 3-d streamline tracking algo-
rithm using dual stream functions. In IEEE Visualization, pages 62�69,
1992.

[KRG03] Peter Kipfer, Frank Reck, and Günther Greiner. Local exact particle trac-
ing on unstructured grids. Computer Graphics Forum, 22(4):133�142, 2003.

[Lan93] David A. Lane. Visualization of time-dependent �ow �elds. In VIS '93:
Proceedings of the 4th conference on Visualization '93, pages 32�38, Wash-
ington, DC, USA, 1993. IEEE Computer Society.

[LGSH06] Robert S. Laramee, Christoph Garth, Jürgen Schneider, and Helwig
Hauser. Texture advection on stream surfaces: A novel hybrid visualization
applied to cfd simulation results. In EuroVis, pages 155�162, 2006.

[LST03] Max Langbein, Gerik Scheuermann, and Xavier Tricoche. An e�cient point
location method for visualization in large unstructured grids. In VMV,
pages 27�35, 2003.

[LW77] D.T. Lee and C.K. Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees.
Acta Informatica, 9(1):23�29, 1977.

[Mel09] J.M. Melenk. Numerik von gewöhnlichen Di�erentialgleichungen. Website,
2009. http://www.math.tuwien.ac.at/~melenk/.

[Mic10] Microsoft Corp. Directx software development kit. Website, June 2010.
http://www.microsoft.com/directx.

[MLP+09] Tony McLouglin, Robert S. Laramee, Ronald Peikert, Frits H. Post, and
Min Chen. Over two decades of integration-based geometric �ow visualiza-
tion. Eurographics 2009, State of the Art Report, pages 73�92, 2009.

[NJ99] Gregory M. Nielson and Il-Hong Jung. Tools for computing tangent curves
for linearly varying vector �elds over tetrahedral domains. IEEE Transac-
tions on Visualization and Computer Graphics, 5(4):360�372, 1999.

[NVI10a] NVIDIA Corp. CUDA Programming Guide, Version 3.0, February 2010.

[NVI10b] NVIDIA Corp. CUDA Programming Guide, Version 3.1, May 2010.

85

BIBLIOGRAPHY

[NVI10c] NVIDIA Corp. Physx by nvidia. Website, June 2010.
http://www.nvidia.com/physx.

[NVI10d] NVIDIA Corp. The CUDA Toolkit, version 3.0. Website, 2010.
http://www.nvidia.com/cuda.

[Pag05] Pagani Automobili S.p.A. Pagani Zonda F - Wind Tunnel. Website, 2005.
http://www.paganiautomobili.it.

[Pan08] Rina Panigrahy. An improved algorithm �nding nearest neighbor using kd-
trees. In LATIN'08: Proceedings of the 8th Latin American conference on
Theoretical informatics, pages 387�398, Berlin, Heidelberg, 2008. Springer-
Verlag.

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scienti�c Computing, 3rd Edi-
tion. Cambridge University Press, September 2007.

[PVH+03] F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. The
state of the art in �ow visualisation: Feature extraction and tracking. In
Computer Graphics Forum, volume 22, pages 775�792. John Wiley & Sons,
2003.

[Ros09] Randi J. Rost. OpenGL Shading Language (3rd Edition). Addison-Wesley
Professional, July 2009.

[Sch08] Marc Schirski. Interactive Particle Tracing for the Exploration of Flow
Fields in Virtual Environments. PhD thesis, RWTH Aachen University,
2008.

[SL00] Alexander J. Smits and T. T. Lim. Flow Visualization: Techniques and
Examples. Imperial College Press, 2000.

[SL05] J.P. Shen and M.H. Lipasti. Modern processor design: fundamentals of
superscalar processors. McGraw-Hill, 2005.

[USM96] Shyh-Kuang Ueng, Christopher Sikorski, and Kwan-Liu Ma. E�cient
streamline, streamribbon, and streamtube constructions on unstructured
grids. IEEE Transactions on Visualization and Computer Graphics,
2(2):100�110, 1996.

[VDBO97] J.W. Van Der Burg and B. Oskam. FASTFLO-automatic CFD system
for three-dimensional �ow simulations. In The Conference on Industrial

86

BIBLIOGRAPHY

Technologies and 3rd Aero Days in Toulouse, France. National Aerospace
Laboratory NLR, Amsterdam, The Netherlands, October 1997.

[VFWTS08] W. Von Funck, T. Weinkauf, H. Theisel, and H.P. Seidel. Smoke sur-
faces: An interactive �ow visualization technique inspired by real-world
�ow experiments. IEEE transactions on visualization and computer graph-
ics, pages 1396�1403, 2008.

[VGVW99] A. Van Gelder, V. Verma, and J. Wilhelms. Volume decimation of irregular
tetrahedral grids. In Computer Graphics International, pages 222�230.
Citeseer, 1999.

[Vir09] Virtual Reality Group, Center for Computing and Communication,
RWTH Aachen. The vista virtual reality toolkit. Website, 2009.
http://www.rz.rwth-aachen.de/ca/c/piz/.

[WIA09] WIAS, The Weierstrass Institute for Applied Analysis and Stochastics. Tet-
gen: A quality tetrahedral mesh generator and a 3d delaunay triangulator.
Website, 2009. http://tetgen.berlios.de.

[Wik09] Wikipedia. Description of regular and unstructured grids. Website, 2009.
http://www.wikipedia.org.

[WMKE04] Manfred Weiler, Paula N. Mallon, Martin Kraus, and Thomas Ertl.
Texture-encoded tetrahedral strips. In VV '04: Proceedings of the 2004
IEEE Symposium on Volume Visualization and Graphics, pages 71�78,
Washington, DC, USA, 2004. IEEE Computer Society.

87

