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ABSTRACT
We present a workflow to semi-automatically create depth maps
for monocular movie footage. Artists annotate relevant depth dis-
continuities in a single keyframe. Depth edges are then learned
and predicted for the whole shot. We use structure from motion
where possible for sparse depth cues, while the artist optionally
provides scribbles to improve the intended visual effect. Finally,
all three sources of information are combined via variational in-
painting scheme.

As the outcome of our method is artistic and cannot be evalu-
ated quantitively, we apply our method to a current movie produc-
tion, showing good results on different scenes. We further eval-
uate the depth edge localization compared to the ”ground truth”
provided by artists. To enable experimentation with our approach,
we offer our source code.

1. INTRODUCTION

Plausible reconstructed depths are indispensable for 2D-3D movie
conversion. The creative industry imposes strong quality require-
ments on such depth maps which current fully automated pipelines
do not produce. These typically fail in scenes containing occlu-
sions, small moving particles, strong specular highlights or translu-
cent objects. Therefore, user intervention is additionally needed to
reliably convert 2D footage.

Finally, changes in depth map are often made manually to al-
ter the depth perception to support a specific dramatic composi-
tion.

Costs and overall processing time influence the competitive-
ness of companies dealing with high quality conversions. Today,
most companies rely on expensive work flows which require lots
of man power (e.g. about 400 artists converted Titanic 3D1). Tools
targeted at aiding the conversion process therefore should aim to
reduce the overall processing time while producing results of com-
parable quality.

In this paper we propose a pipeline based on learning depth
discontinuities, structure from motion and variational depth in-
painting. Unlike more commonly used segmentation based meth-
ods, the advantage of our approach is that the outcome of our in-
painting process directly provides smooth depth maps with sharp
edges only at artistically relevant depth discontinuities. We do
not have to take care of segment boundaries which lie at continu-
ous depth junctions and lead to depth offsets require further user
interactions.

1.1. Related Work

A vast body of literature exists to fully automatically address dis-
continuity in optical flow[16], stereo estimation[7], (video or super-

1www.fxguide.com/featured/art-of-stereo-conversion-2d-to-3d-2012/

Figure 1. Depth discontinuities are labeled, learned by a random forest
and afterwards predicted for several subsequent frames. We use those dis-
continuity edges as interpolation regularization. Thus, depth maps can be
interpolated from sparse depth information. As result, our depth maps are
smooth with sharp edges only at discontinuities.

pixel) segmentation[13, 3, 9], matting[6], and virtually any im-
age processing or computer vision approach producing dense re-
sults. One of the predominant approaches is the use of total vari-
ation regularizers. In this paper, we introduce the idea of semi-
automatic annotation of edges, which can be generalized to all of
these methods to improve their accuracy.

More specific to the problem of movie dimensionalization,
several related ideas are discussed in the following.

Tools such as VisualSFM[15] and Phototourism[11] compute
structure from motion. Multiview stereo approaches are used to
densify sparse motion reconstructions(cf. e.g. [2]). Saxena et al.
[10] rely on learning to fully automatically assign depths to single
still images. A similar goal was achieved for videos by Karsch et
al. [8].

Yet, real movies show difficult conditions as e.g. indepen-
dently moving objects with motion blur. Our experience with
such image sequences gave us the insight that fully automatic
approaches seldomly achieve results in a quality required by the
creative industry. Exceptions are cases of highly constrained and
carefully set up scenes as for example the Trinity scene in The
Matrix2(1999).

Directly related to our approach is the work of Guttmann et
al. [4], who are among the first authors to address dimension-
alization. They utilize user scribbles for semi-automatic stereo
extraction. A more recent tool is Depth Director by Ward et al.
[14]. The authors propose a segmentation based conversion ap-
proach, also utilizing user scribbles to process single objects. As
a next step, sparse depth cues are assigned to these segments. Our

2http://www.matrixeyewear.com/blog/breaking-down-the-special-
effects-of-the-matrix
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Figure 2. Depth edges highlighted by red circles. While the kink in Figure
a) is a C0 discontinuity, we basically utilize C−1 edges such as in b)
which forces a gap between depth values. Green circles induce locations
for putative texture only edges.

approach differs in that we focus on depth edge annotation and
subsequent variational depth interpolation based on both SfM and
user scribbles.

2. OUR CONTRIBUTION

We choose a learning based approach to predict depth edges. Then,
depth cues are calculated from motion. Additional user scribbles
can be assigned, if depth cues do not supply sufficient informa-
tion (e.g. scenes without motion or unstructured objects). Finally,
depth cues and depth edges are used as input to an interpolation
process to obtain dense and smooth depth maps.

As mentioned earlier, a tool should enable artists in creating
results with as little interaction as possible in a small amount of
time. We believe that supplying rough user scribbles to mainly
annotate depth edges is easier and can be done faster than painting
depth maps by hand. In the following we describe the individual
models of our pipeline.

2.1. Depth Edges

We aim to use depth edges as boundary conditions for the the fol-
lowing inpainting process in section 2.3. In contrast to texture
edges at which object depths do not change in general, depth edges
depend on the objects shape and position in a scene. Figure 2 il-
lustrates two different types of depth edges marked by red circles,
possible texture-only edges could be located at the green circles.
While the left C0 edge appears as kink for the according view, the
right C−1 edge induces a depth gap in its according projection.
Our approach can treat both of these types. For our application we
basically rely on this second C−1 edge type.

2.1.1. Annotating Depth Edges
Depth edges are labeled using our interactive framework. User
annotations may be imprecise. In order to facilitate quick and
easy annotations, we chose the canny edge detector to provide
edge suggestions and take the intersection of canny edges and user
labels to refine the result. The parameters of the edge detector
were chosen such that a maximum amount of edges is found. Once
all relevant depth edges are annotated in a single key frame, we
propagate those labels to the remaining frames. Propagated edges
have to be precise. It is not reasonable to use optical flow for
this purpose since flow at discontinuities cannot be estimated in
a quality needed for our application. Thus, we rely on a learning
approach explained in the following section.

Edge Cue Descriptions Num
Color cues 32
C1. Colors channels 6
C2. Neighbor colors next to putative edge 6
C3. Color Histograms 12
C4. Mean Color of neighbor segments 6
Edge cues 79
E1. Color gradient 4
E2. Histogram of gradients 5
E3. Eigen values 4
E4. Histogram of eigen values 20
E5. Ratio between eigen values 4
E6. Eigen values and ratios of neighbor pixels 32
E7. Hessian 3
E8. Diffusion tensor 3
E9. Bilateral filter 3
E10. Gradient of optical flow 1

Table 1. Features assigned to random forest. Most features are calculated
on HSV channels, some for RGB aswell.

2.1.2. Learning Depth Edges
To learn depth edges we chose the random forest framework with
sample stratification in each tree to account for class imbalance in
the learning set. Beside depth edges we classify pixels as texture
edges or as pixels not lying on an edge.

Our approach utilizes the fact that an image sequence of the
same shot contains very similar frames. Therefore, instead of
learning a model applicable to all kinds of scenes, we learn a
model per shot based on the user annotations in a single frame.
We choose features which can be categorized as color features or
as edge features. Beside that, most features are determined for the
color channels H, S and V separately. Also, most features are cal-
culated for three different scale spaces3. Table 1 gives an overview
of our feature selection.

Color features C1, C2, C3, C4 are the most specific features
of our set since colors may change between scenes. While color
feature C1 indicates possible color areas, the other three features
C1, C2 and C3 contain information about color neighborhoods.
We chose those neighbor pixel coordinates (for features C2, C4,
E6) with respect to eigen vector directions (determined from struc-
ture tensor). Thus, neighbors of edge pixels should be located in
and perpendicular to the edge directions.

The combination of color features and edge features enables
reasonable predictions of different edge types. Color and bright-
ness often changes at depth boundaries and so, color differences
at edges can be used to classify them.

2.2. Depth Cues

We use structure from motion using VisualSFM [15] where pos-
sible to retrieve sparse depth information. To get uniformly dis-
tributed depths we replace SIFT features by optical flow corre-
spondences. If footage is unusable for SfM purposes due to miss-
ing camera motion or not trackable rigid objects, depth has to be
assigned by hand. User scribbles can be attached to key frames
propagated to subsequent frames using optical flow.

3For different scale spaces we blur with sigma = 1, 3, 9



Figure 3. Converted sequence by depth label annotations for frame 1 and 25. The first row shows the predicted depth edges, the second row the
corresponding depth maps. Sparse depth cues were taken from structure from motion. User scribbles were used to correct the depth of the moving person.

2.3. Depth Interpolation

In order to perform interpolation of the sparse depths d(~x1), ..., d(~xK),
respectively obtained at the support positions ~x1, ..., ~xK , we use
a variational approach. That is, we minimize an energy functional
globally over the whole image range Ω w.r.t. the sought dense
depth map d̂(~x). This energy functional consists of a data term

Ed =

K∑
k=1

pk · Φ
((

d̂(~xk)− d(~xk)
)2
)

, (1)

ensuring matching of sparse depths against the dense depth map
and a λ-weighted prior term

Ep =

∫
Ω

Φ
(
‖~∇d̂(~x)‖22

)
d~x, (2)

imposing a smoothness constraint on the resulting depth map. Here,
we chose λ = 400, whereas Φ denotes a suitable chosen penalty
function. To obtain sharp borders and smooth areas, we use the
Charbonnier penalty function Φ(∆2) =

√
∆2 + ε2, parameter-

ized with ε = 0.01, which represents a differentiable approxima-
tion of the l1 norm [1].
In order to cope with occluding and uncovering regions of the
depth map and obtain temporal consistency, we use an additional
pk as a weighting factor within the data term. As this factor ex-
presses consistency over time, it depends on the old dense depth
map d̂t−1 and the current sparse depths dt. It is given by a relative
probability measure

pk = exp

−
(
dt+1(~xk)− d̂t(~xk)

)2

2σ2

 , (3)

parameterized with the standard deviation σ, and motivated by
the fact that covering and uncovering of regions implies depth
changes, in general, whereas the depth change of a single region
can be assumed as smooth over time. In our experiments, we
chose the standard deviation σ = 1000. Proper implementation of
the prior term denoted by eq. (2) depends on proper discretization
of the partial derivatives of the ∇ operator. We discretize these
partial derivatives by taking all pairwise differences between a cur-
rently considered central position ~x and all horizontal and vertical
neighbor positionsN (~x). We handle image and depth boundaries
the same way by excluding them from this neighborhood.

Optimization of the energy functional

E = Ed + λ · Ep (4)

is being performed straightforward by first setting up the Euler
Lagrange equations and then solving for the sought dense depth
map.

3. EXPERIMENTS AND RESULTS

3.1. Depth Maps

Depth maps were created by labeling depth edges in frames {1, 25}
of a sequence with 25 frames. We make use of the camera mo-
tion. Thus, depth cues were calculated using VisualSFM [15] for
camera tracking and correspondences were converted from state-
of-the-art optical flow [12]. Since the body in the image center
moved around, no reliable depth from motion can be retrieved for
this area. Additional depth cues were assigned manually to over-
haul this drawback.

3.2. Comparison to other depth contour annotations

We compare our depth maps to results achieved by the interpola-
tion process using alternate regularization masks which are edges
from superpixels and canny edges. All four depth maps created for
this purpose use the same sparse depth cues. Figure 4 shows the
results for those masks. Red squares highlight areas, where depth
maps falsely show depth gaps induced by inappropriate edges.
Blue squares show incomplete edges at depth boundaries. Results
from superpixels, which could be compared to results by segmen-
tation due to the consistent segment boundaries do not have to
deal with color bleeding but smooth areas are only possible by
merging segments which will lead to the loss of details. Arbitrary
edges from edge detectors as the canny edges induce both short-
comings. Color bleeding will be received at incomplete edges and
separated depth artifacts occur at closed edge loops. Our approach
also shows bleeding in few regions but performs very good on
smooth edges while widely retains the depth discontinuities.

4. CONCLUSION

We proposed a semi-automatic approach to learning depth edges
via random forests. The concept can be used in many low-level
vision algorithms such as rotoscoping, optical flow or stereo esti-
mation.

The outcome of our workflow are detailed smooth and dense
depth maps with sharp edges at discontinuities. The absence of
stepping artifacts caused by other methods based e.g. on segmen-
tation or optical flow creates a pleasant viewing experience while
simultaneously empowering the artist to achieve the intended emo-
tional response of the viewer via visual effects.



Figure 4. Comparison between different regularization masks. a) Our approach has to deal with partly incomplete edges which leads to color bleeding.
b) Results obtained by edges taken from superpixels or segmentation have clean edges but show depth artifacts for single segments. c) Results by canny
edges show both drawbacks.
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laud. Two deterministic half-quadratic regularization algo-
rithms for computed imaging. In ICIP (2), pages 168–172,
1994.

[2] Y. Furukawa and J. Ponce. Accurate, dense, and robust
multi-view stereopsis. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 32(8):1362–1376, 2010.

[3] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient
hierarchical graph-based video segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 2141–2148. IEEE, 2010.

[4] M. Guttmann, L. Wolf, and D. Cohen-Or. Semi-automatic
stereo extraction from video footage. In Computer Vision,
2009 IEEE 12th International Conference on, pages 136–
142, 2009.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004.

[6] K. He, J. Sun, and X. Tang. Fast matting using large ker-
nel matting laplacian matrices. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages
2165–2172. IEEE, 2010.

[7] H. Hirschmuller. Accurate and efficient stereo processing by
semi-global matching and mutual information. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 2, pages 807–814.
IEEE, 2005.

[8] K. Karsch, C. Liu, and S. B. Kang. Depth extraction from
video using non-parametric sampling. In Computer Vision–
ECCV 2012, pages 775–788. Springer, 2012.

[9] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Inter-
active foreground extraction using iterated graph cuts. In
ACM Transactions on Graphics (TOG), volume 23, pages
309–314. ACM, 2004.

[10] A. Saxena, M. Sun, and A. Ng. Make3d: Learning 3d scene
structure from a single still image. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 31(5):824–840,
2009.

[11] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-
ploring photo collections in 3d. In SIGGRAPH Conference
Proceedings, pages 835–846, New York, NY, USA, 2006.
ACM Press.

[12] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow
estimation and their principles, 2010.

[13] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Mul-
tiple hypothesis video segmentation from superpixel flows.
In Computer Vision–ECCV 2010, pages 268–281. Springer,
2010.

[14] B. Ward, S. B. Kang, and E. P. Bennett. Depth director: A
system for adding depth to movies. IEEE Computer Graph-
ics and Applications, 31(1):36–48, 2011.

[15] C. Wu. Visualsfm: A visual structure from motion system,
2011.

[16] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving
optical flow estimation. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 34(9):1744–1757, 2012.


