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Figure 1: Brake Lever dataset. Tensor field lines (a) are continuous but not quantitative. Superquadric glyphs (b) are quan-

titative but discrete. Von Mises stress rendering (c) is continuous but not showing orientation. Our virtual photoelasticity (d),

which corresponds to experimental stress analysis with polariscopes, is continuous, quantitative, and conveys orientation.

Abstract

We present a novel physically-based method to visualize stress tensor fields. By incorporating photoelasticity into

traditional raycasting and extending it with reflection and refraction, taking into account polarization, we obtain

the virtual counterpart to traditional experimental polariscopes. This allows us to provide photoelastic analysis

of stress tensor fields in arbitrary domains. In our model, the optical material properties, such as stress-optic

coefficient and refractive index, can either be chosen in compliance with the subject under investigation, or, in case

of stress problems that do not model optical properties or that are not transparent, be chosen according to known or

even new transparent materials. This enables direct application of established polariscope methodology together

with respective interpretation. Using a GPU-based implementation, we compare our technique to experimental

data, and demonstrate its utility with several simulated datasets.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis—; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—;

1. Introduction

Tensor fields are ubiquitous in science and engineering, and
there has been considerable research on their adequate visu-
alization. Whereas scalar fields are often amenable to color-
based visualization, and visualization of vector fields can
employ contrast to convey direction, such direct perceptual
representations are not available for tensor data.

Part of the existing techniques for tensor field visual-
ization derive lower-dimensional quantities from the ten-
sors and employ existing approaches for their visualization,
which, however, involves some kind of projection and typi-
cally restricts the representation. Another, and widely used,
discipline is concerned with the development of glyphs that
convey the full information of tensors, however, with the
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drawback that these representations typically lack continu-
ity. The approach that we describe in this paper also takes
the full tensor information into account, but produces contin-
uous visualizations by means of a physically-based model.

In general, visualization results require interpretation,
and this interpretation is primarily based on experience—
experience regarding the problem domain where the data
originated from, and, in particular, experience with the vi-
sualization technique itself. While straightforward visualiza-
tion techniques tend to be easy to interpret, they often lack
expressiveness. On the other hand, advanced visualization
techniques often require substantial experience for appropri-
ate interpretation and handling.

Self-illustrating phenomena are of interest in many re-
gards. On the one hand, these natural visualizations readily
reveal physical mechanisms and have been providing pow-
erful analysis tools, particularly before the onset of scien-
tific computing. On the other hand, they represent an excel-
lent source for computational visualization techniques—by
mimicking their effects with computational models, we ob-
tain physically-based visualization techniques that are well-
defined, can be compared with experiments, and, most im-
portant, make use of the interpretation experience gained
from the real self-illustrating counterparts. Examples for
such success stories in scientific visualization include vol-
ume rendering, line integral convolution, and dye advec-
tion. With this paper, we would like to call attention to the
self-illustrating phenomenon of photoelasticity and advocate
its application for computational visualization of indefinite
symmetric tensor fields, i.e., in particular, stress tensor fields.

Photoelasticity is present if transparent materials exhibit
birefringence, i.e., if they impose two different refractive in-
dices on passing light. This can be due to anisotropic prop-
erties of the material itself, such as in the case of crystals,
or caused by stresses in many transparent materials. Thus,
the photoelastic effect is traditionally used in polariscopes
(Figure 2) for the analysis of stresses in transparent objects.
Depending on the type of polarization of their polarizers and
analyzers, which may be linear or circular, the respective po-
lariscopes are denoted plane polariscope and circular polar-
iscope, respectively. In our approach, we model both vari-
ants for the analysis of stress fields. Note that we use the po-
lariscope metaphor also for stress fields that were obtained
in absence of optical considerations or for non-transparent
objects, enabling the utilization of interpretation experience
from experimental photoelasticity analysis to any stress field
data. In such cases, the user is free to choose the optical prop-
erties, i.e., the refractive index and stress-optic coefficient.

Our contributions include:

• Photoelasticity for scientific visualization of stress fields.
• Incorporation of photoelasticity into raycasting, includ-

ing refraction and reflection, and hence allowing for
physically-based analysis of arbitrary 3D data.

• A GPU implementation providing interactive rates.

2. Related Work

There is a substantial amount of work on computer-aided
photoelastic analysis [Pat02], which, however, is experimen-
tal and therefore not closely related to our work. We refer to
textbooks on optics [Hec02] and solid mechanics [Sha08]
for an introduction to the topic, to the manual by Doyle and
Phillips [Kob83], and to the video [FM49] that served for
validation of our technique. A recent example of photoelas-
ticity applications is the work by Deuschle et al. [DWG∗06]
in the context of generating ground truth for simulation data.
Traditional photoelastic analysis (and hence also our ap-
proach) does not involve scattering. Nevertheless, the work
by Chandrasekhar [Cha60] on the radiative transfer equation
provides a good introduction to the topic of polarization.

In the field of raytracing, i.e., where optical effects are
considered only at material interfaces, polarization is ad-
dressed by Wolff and Kurlander [WK90], birefringence in
anisotropic media by McClain et al. [MHC93], birefringence
in uniaxial media by Weidlich and Wilkie [WW08], and in
biaxial media by Latorre et al. [LSG12]. Visualization of po-
larization in rendering is the subject of the work by Wilkie
and Weidlich [WW10]. Combined rendering of polarization
and fluorescence is addressed by Wilkie et al. [WTP01]. An
overview of polarization in computer graphics can be found
in the course notes by Wilkie and Weidlich [WW12]. All
these works are related to ours in the sense that polarized
light is traced, but none of these techniques involves con-
tinuous effects on light between the interfaces in terms of
raycasting, as is necessary for our application.

We base our work on the model of integrated photoelastic-
ity by Aben [Abe79]. In his (and subsequent) work, effects
at interfaces are neglected, i.e., reflection and refraction are
not addressed. It is our main contribution to include Aben’s
model into raycasting, extend it with reflection and refrac-
tion, and to advocate its use for the visualization of stress
tensor fields in general. This enables us to provide at inter-
active frame rates a true virtual counterpart to experimental
photoelastic analysis of arbitrarily-shaped 3D objects.

In contrast to the large body of literature on the visual-
ization of semidefinite symmetric tensor fields, there is less
work so far on visualization of indefinite symmetric fields.
In the field of glyph-based visualization, the superquadric
glyphs presented by Schultz and Kindlmann [SK10] are
a primary choice for general second-order symmetric ten-
sors. In the field of continuous visualization of tensor fields,
widely used visualization techniques for general tensor fields
include tensorlines by Weinstein et al. [WKL99], hyper-
streamlines by Delmarcelle and Hesselink [DH93], and hue
balls and lit tensors by Kindlmann and Weinstein [KW99].
It has to be noted that many visualization techniques focus
on semidefinite symmetric tensors and that many of those
are not directly applicable to indefinite symmetric tensor
fields. One such example is fractional anisotropy [WPG∗97]
and the techniques that utilize it. We refer the reader to
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Figure 2: Circular polariscope, from right to left. Incident light (gray) is linearly polarized (green), and transformed to circular

polarization (yellow) while passing a λ/4-plate (magenta, fast direction by red arrow, slow by blue). It then enters the material

under investigation (blue), which, in general, renders it elliptically polarized (orange). Subsequently, it passes another λ/4-

plate with opposite orientation, and from that, a single linear polarization is selected by the analyzer (red). This results in two

waves with retardation Δ, leading to the observed images due to interference.

the survey by Kratz et al. [KASH13] for further literature
on tensor field visualization, and to the work by Kratz et
al. [KSZ∗14] for a visualization-guided design study of a
brake lever, which we also use for demonstrating our tech-
nique. The works most closely related to ours, in the sense
that indefinite second-order symmetric tensor fields are visu-
alized in a continuous manner with an optical model, are that
by Kratz et al. [KMH11] and Dick et al. [DGBW09]. Both
approaches involve raycasting but address goals different to
ours—we aim at exploiting photoelasticity and, in particular,
the experimental experience and knowledge on how photoe-
lasticity is applied and interpreted.

3. Method

Section 3.1 gives an introduction to the functionality of po-
lariscopes and provides basics, followed by a description of
the stress-optic law in Section 3.2, which represents a simpli-
fied model for two-dimensional problems, i.e., where bire-
fringence does not vary along light rays. This provides a ba-
sis for integrated photoelasticity (Section 3.3), as presented
by Aben [Abe79]. In Section 3.4, we show how we extend
the concept with refraction and reflection. In Section 4, we
describe how the overall approach is integrated in the ray-
casting framework and provide implementation details.

3.1. Polariscope Functionality

A polariscope consist of a plane light (Figure 2(a)), a linear
polarization filter denoted “polarizer” (b), an optional λ/4-
wave plate (c), the object to analyze (d), another optional
λ/4-plate (e), another linear polarization filter denoted “ana-
lyzer” (f), and the observer or optical acquisition device (g).

In a circular polariscope, both λ/4-plates are present,
whereas they are missing in a plane polariscope. A wave
plate causes a retardation, i.e., a lower speed of light, on the
light components oriented along its “slow” direction (blue
arrows in Figure 2), whereas components along its “fast”
direction are less retarded. This results in a phase shift of
the slow component relative to the fast component. A λ/4-
plate causes a phase shift of π/2, producing circularly po-
larized light from linearly polarized light. Hence, the linear

polarization filter (b) together with the wave plate (c) can be
subsumed as a circular polarization filter (circular polarizer),
and the wave plate (e) together with the analyzer (f) as a sec-
ond circular polarization filter. In a circular polariscope, the
two wave plates are oriented perpendicular, i.e., with oppo-
site fast and slow directions.

If no object (d) is present in the polariscope, light is polar-
ized linearly at the polarizer, transformed to circular polar-
ization at the first wave plate, transformed back to linearly
polarized light at the second wave plate (with same polariza-
tion direction as before entering the first wave plate), and has
to pass the analyzer. If the orientation of the analyzer is per-
pendicular to that of the polarizer, all light is blocked by the
analyzer. Otherwise, depending on the angle of orientation
between polarizer and analyzer, a certain amount of light is
passing and reaches the detector (g). In this regard, the two
wave plates (in other words, the difference between a planar
and a circular polariscope) do not have a substantial impact.

If, however, a transparent object, which exhibits birefrin-
gence, is positioned inside the polariscope (d), retardation
due to the object is visualized. Polariscopes are applied to
visualize weak birefringence, which causes retardation but
does not cause noticeable double refraction, i.e., geomet-
rically deviating rays, as would be the case, for example,
in calcite. Weak birefringence is, in particular, caused by
stresses in transparent material, with fast and slow directions
aligned with the stress directions. If now such weak birefrin-
gence is caused by the object, there is a phase shift between
the slow and the fast light component arriving at the ana-
lyzer, and the analyzer “cuts” a linearly polarized component
from both parts, resulting in two superposed polarized light
waves exiting the polariscope and reaching the sensor. These
two light waves are subject to a relative phase shift ∆, also
denoted retardation in this context. These two light waves
are subject to interference, and hence amplify or annihilate
each other depending on the relation between ∆ and their
wavelength, leading to interference colors (Figure 1(d)).

Parametrization of the polariscope can be achieved by
adding/removing both wave plates, rotating the analyzer
around the view axis, and by rotating the object, or ana-
lyzer/polarizer simultaneously. In our case of a virtual po-
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lariscope, we can also adjust the stress-optic coefficient (see
below) to control the visualization (Figure 7). Note that ad-
justing this coefficient corresponds to choosing different op-
tical materials. This is particularly beneficial in configura-
tions where the stresses would be insufficient or too high to
provide expressive visualization with, e.g., glass as material.

3.2. Stress-Optic Law

If light passes orthogonally a thin plate of material located
in the polariscope, if the birefringence properties of this ma-
terial do not change along the light ray, and if one of the
principal stresses is also perpendicular to the plate interface,
then two-dimensional photoelasticity is applicable, and the
relative phase shift ∆ at the observer can be obtained directly
by the stress-optic law [DR78]:

∆ =
2πh

λ
C(σ1 −σ2), (1)

where σ1 and σ2, σ1 ≥ σ2, are the first and secondary prin-
cipal stresses in the 2D plane, h is the slices thickness, and λ

is the wavelength of the incident light wave. C is the stress-
optic coefficient, which relates the indices of refraction to
the principal stresses:

∆n = n2 −n1 =C(σ1 −σ2). (2)

The stress-optic law is also applicable if the plate is not
aligned with the principal stresses, in which case the phase
shift is induced by the secondary principal stresses σ′

1 and
σ′

2, σ′

1 ≥ σ′

2. The secondary principal stresses can be ob-
tained by intersecting the stress ellipsoid, i.e., the ellipsoid
having the principal stresses as semi-principal axes, with a
plane that passes through the center of the ellipsoid and is
perpendicular to the incident ray. The semi-principal axes
of the resulting intersection ellipse represent the secondary
principal stresses (Figure 13.1 in Dally and Riley [DR78]).

However, if the principal stress directions (or the index
ellipsoid representing the orientation and relative magnitude
of the resulting refractive indices) vary along the light ray,
the stress-optic law is not applicable. Since this is, in gen-
eral, the case in polariscope analysis, we need to follow the
extended approach of integrated photoelasticity.

3.3. Integrated Photoelasticity

For our approach, we follow the model of integrated pho-
toelasticity by Aben [Abe79], which takes into account ar-
bitrary variation of stress along the path of light. It can be
shown that the stress-optic law is a special case of the in-
tegrated photoelasticity model, if secondary principal stress
directions are considered and if the birefringence properties
of the material do not vary along the ray.

Aben models the propagation of a polarized light wave
through a photoelastic medium under arbitrary stress as the

electric vector E ∈ C
2 propagating in z-direction as:

dE

dz
= GE , with E =

(
Ex

Ey

)
, (3)

with

G=−i
2π

λ
C

[ 1
2 (σ

′

11 −σ′

22) σ′

12

σ′

12 −
1
2 (σ

′

11 −σ′

22)

]
. (4)

Here, σ′

i j are the secondary stresses, i.e., the stresses in the
plane perpendicular to the propagation vector of the light
wave. We obtain σ′ by projecting the 3D stress tensor S on
that plane, spanned by two orthonormal vectors s0 and t0:

σ′ =

(
sT0 Ss0 sT0 S t0

tT0 Ss0 tT0 S t0

)
. (5)

The model assumes weak birefringence [O’r51], i.e., ∆n ∼

O(10−3). In our experiments, we did not encounter a situa-
tion that would have required exceeding this level.

The model of integrated photoelasticity describes the light
wave propagation through a stressed medium by means of
a polarized light vector. Hence, we can use Jones calcu-
lus [JON41] to solve for the complete light transport from
the light source, through polarizer, wave plate, weakly bire-
fringent medium, the secondary wave plate, and the analyzer
to the observer. The x- and y-component of the polarized
light vector traveling along the z-axis can be written

(
Ex(t)
Ey(t)

)
=

(
Ẽxeiφx

Ẽyeiφy

)
e

i(kz−ω t), (6)

with plane wave equation ei(kz−ω t) and Jones vector
(Ẽxeiφx , Ẽyeiφy)T. To determine the intensity per wavelength
at the observer, we are only interested in the amplitude and
relative phase shift of the light vector, which is encoded by
the Jones vector. Along with Jones vectors, we make use
of Jones matrices to describe the optical elements along the
light path. The circular polariscope with polarizer and ana-
lyzer at angles ϕ and ϑ, respectively, is described by

E = AR
−π/4CRπ/4 Do

∫

z

G(s)dsDiRπ/4 CR
−π/4 Ep Il , (7)

with

Ep =

(
sin(ϕ)
cos(ϕ)

)
, A=

(
cos2 ϑ cosϑsinϑ

sinϑcosϑ sin2 ϑ

)
, (8)

C= e
i π

4

(
1 0
0 −i

)
, Rθ =

(
cosθ −sinθ

sinθ cosθ

)
, (9)

Il being the intensity incident from the light source, Ep the
polarized light vector, A the Jones matrix of the analyzer,
C a quarter-wave plate with horizontal fast axis, Rθ rotates
the optical element, and Di and Do model Fresnel refraction
(Section 3.4). The intensity of linearly polarized light leav-
ing the analyzer and reaching the observer is

I = ExEx +EyEy . (10)
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Conceptually, one has to evaluate Equation 10 (i.e., integrate
Equation 7) for all wavelengths to obtain, for the given ray,
the spectrum.

3.4. Extension with Refraction and Reflection

To achieve better depth perception and obtain results that
better reflect typical experimental configurations of object
geometry and refractive indices, we extend Aben’s model of
integrated photoelasticity by refraction and reflection. Since
both involve changes in the polarization of light, we make
use of Jones calculus here, too.

Refraction and reflection is described by the Fresnel equa-
tions. When light is reaching a material interface from a
medium with refractive index n1 to a medium with refrac-
tive index n2, where the incident ray forms an angle θi with
the surface normal, part of it is generally reflected at angle
θr = θi, while the remaining part is generally refracted into
the second medium at angle θt according to Snell’s law:

sinθi

sinθt
=

n2

n1
. (11)

Fresnel’s equations include a formulation in terms of
power and one in terms of amplitude. Since we want to in-
clude refraction and reflection within the object, we need to
use the amplitude formulation to be able to include it into
the integrated photoelasticity approach in terms of retarda-
tion. Both the refracted and reflected rays are formulated
in terms of (a superposition of) p-polarized and s-polarized
light. For the incident ray, the component p that is polarized
in the incident plane (containing the incident ray, the sur-
face normal, and the refracted ray), is denoted p-polarized,
while its component s polarized perpendicular to this plane
is s-polarized. According to Fresnel, the reflected ray con-
sists of an amount rs of s-polarized light and amount rp of
p-polarized light, whereas the refracted ray consists of an
amount ts of s-polarized light and tp of p-polarized, with

rs =
n1 cosθi −n2 cosθt

n1 cosθi +n2 cosθt
(12)

rp =
n2 cosθi −n1 cosθt

n1 cosθt +n2 cosθi
(13)

ts =
2n1 cosθi

n1 cosθi +n2 cosθt
(14)

tp =
2n1 cosθi

n1 cosθt +n2 cosθi
. (15)

As will be discussed in Section 4.1, we treat within the
medium only total internal reflection, hence we need to ap-
ply Fresnel’s equations only at the ray’s entry and exit point.
This is accomplished by integrating them into Equation 7

using the extended Jones matrix method [Yeh82]:

Di =

(
s ·e ts p ·e tp

s ·o ts p ·o tp

)
, Do =

(
e ·s ts o ·s ts
e ·p tp o ·p tp

)
, (16)

where, in case of weak birefringence, as assumed, o is per-
pendicular to s and the refracted ray, while e is perpendicular
to o and the refracted ray.

4. Implementation by Raycasting

We describe the implementation of the overall approach in
terms of volumetric raycasting. We start with a description
on how the rays are traced through the virtual polariscope
(Section 4.1). Based on that, we give details on how pho-
toelasticity is integrated (Section 4.2). Finally (Section 4.3),
we describe how colors are obtained from Equation 10. Fur-
ther details of our CUDA-based prototype are provided in
the supplemental material accompanying this work.

4.1. Ray Traversal

We perform photoelasticity raycasting in the framework of
traditional GPU-based front-to-back raycasting. The main
reason for front-to-back order is not early ray termination
(although we include absorption), it rather simplifies the
handling and the implementation of photoelasticity integra-
tion. Due to Helmholtz reciprocity, reversing the direction of
light transport holds also for photoelasticity.

Since we include reflection and refraction, intersections
of the view ray with material interfaces have to be deter-
mined. We provide two approaches: either the whole dataset
is assumed to exhibit uniform refractive index (Mode 1),
or selected regions within the data can exhibit such a uni-
form refractive index (Mode 2). We assume vacuum in the
surrounding volume. In our implementation, we do not con-
sider continuous refraction (varying refractive index), how-
ever, it could be easily included, e.g., following the approach
by Ament et al. [ABW14].

Overall, integration of reflection and refraction includes
a raytracing problem. Nevertheless, we denote our approach
raycasting-based because the focus is on the interaction with
the medium, i.e., the integration of photoelasticity. We also
model absorption to account for the absorption in physi-
cal materials. However, we omit emission in our results, al-
though there might be applications, e.g., if luminescent ma-
terials are examined with a polariscope.

In our current implementation, we do not split rays
at material interfaces to account for simultaneous re-
flection and refraction. Although this would be easily
possible—the approach of integrated photoelasticity allows
for superposition—we avoid it for several reasons:

• Light incident from the light source reflected at the ma-
terial (case (i) in Figure 3) and reaching the camera
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(a)

(b)

(c)

(d)

(e)
(iii)

(ii)

(i)

Figure 3: Illustration of ray traversal. Raycasting in direc-

tion from camera (a) to light source (e), but with reverse

reflection/refraction, i.e., light direction is from (e) to (a).

would cause gloss and hinder proper analysis. Further-
more, since the light source in a polariscope is located
behind the object, such gloss cannot appear. Hence, we
do not need to split rays in this case. Nevertheless, we ac-
count for the loss (i) by applying the Fresnel equations
at (d), regarding the intensity along (d)–(c).

• On the other hand, if light reaches the interface from in-
side the object, part of it can refract (ii) and hence exit,
while part of it can be reflected to the interior ((c)–(b)).
If there is total internal reflection, the ray does not need
to be split. In this case we follow the ray. If, on the other
hand, there is refraction, this can lead to two situations:
a) The exiting part reaches the camera ((b)–(a)). We han-

dle this case directly by our front-to-back raycasting
and account for the part that is lost due to internal re-
flection (iii) by applying the Fresnel equations at (b).
However, we do not trace (iii) further, to ease the over-
all implementation, accelerate the overall technique,
and avoid additional reflections which would further
superimpose the patterns and complicate visual anal-
ysis. Nevertheless, integrating (iii) further would be a
straightforward operation.

b) The exiting part does not reach the camera (ii). In this
case, we stop the ray, i.e., we do not trace the internally
reflected part ((c)–(b)) further, for the same reasons as
in a). More precisely, both rays are ignored implicitly
by our front-to-back raycasting approach.

As a consequence, during our front-to-back traversal, we test
the Fresnel equations in reverse orientation (Figure 3(b)–
(d)), i.e., if we are inside the medium, we test for reverse total
internal reflection at each interface (e.g., (c), (d)). If there is
reverse total internal reflection, we follow the reflected ray.
If there is not total internal reflection, we exit the medium
and test for intersection with the light source. If the plane
light source is hit (e), our evaluation is complete. Otherwise,
no light is contributed at the respective pixel.

In our present implementation, we either detect view ray
intersections with the domain boundary (Mode 1), or pro-
vide a scalar field ι, where the interface is defined implicitly
(Mode 2), i.e., by an isosurface. In the raycasting kernel, we
simply test for transition of the isolevel to determine the in-
terface. The normal required for reflection and refraction is

provided by a vector field obtained from the gradient of ι in
a preprocessing step. For the shown results, we generated ι

by thresholding and subsequent smoothing. We have chosen
this approach for its efficiency and ease of integration with
existing raycasting code. Determining interface intersection
and normals from meshes would be likewise possible.

4.2. Integration

We integrate photoelasticity by numerical integration of
Equation 7 using the fourth-order Runge-Kutta scheme.
Note that solving Equation 7 requires integration of a com-
plex matrix. Finally, we prevent infinite integration due to to-
tal reflection by limiting the maximum number of bounces,
40 in our experiments. More details can again be found in
the supplemental material.

4.3. Color Evaluation

In compliance with experimental polariscope analysis, we
provide both chromatic and monochromatic operation. In the
monochromatic case, Equation 10 is evaluated (and hence
Equation 7 integrated) only once per view ray. For the chro-
matic results, we evaluated 16 [WND∗14] wavelengths, uni-
formly sampled in [380,700] nm and converted the result us-
ing CIE31 to RGB color space.

5. Results

We start with a brief introduction to polariscope result in-
terpretation in Section 5.1, followed by a short comparison
to previous work (Section 5.2), Further introduction is pro-
vided in the supplemental material. We recommend to also
watch the video [FM49] and to have a look at the polariscope
analysis manual by Doyle and Phillips [Kob83]. Our first re-
sults visualize the Two-Point Load dataset (Section 5.3), fol-
lowed by another simple dataset representing the setup from
the video (Section 5.4). We then proceed to the Brake Lever
dataset (Section 5.5), and conclude with the analysis of an
anatomical simulation of a Femur (Section 5.6). Table 1 pro-
vides a subset of the timings obtained with a Nvidia GeForce
GTX 760, which can be found in the supplemental material.

5.1. Polariscope Interpretation

The fringe patterns in Figure 4 exhibit areas, where extinc-
tion of light of a single wavelength occurs. Extinction hap-
pens where the secondary principal stresses differ by a factor
of 2πn,n = 0,1,2,3, . . . , causing isochromatic fringes that
show loci with same order of relative retardation ∆ and hence
similar stress. Starting from regions with no stress, the fringe
order N is denoted N = ∆

2π . Regions of high stress are re-
vealed by close fringes. In a plane polariscope, the isochro-
matics are superimposed by isoclinic fringe patterns (e.g.,
the white vertical line in Figure 4(e)). These lines appear
where the (rotated) stress directions coincide with the axis
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Simple Model dataset. Polarizer orientation by blue arrows, analyzer orientation by red arrows. No refrac-

tion/reflection (a)–(d), refraction/reflection (e)–(l), and monochromatic analysis (i)–(l) at 575 nm. Plane polariscope analy-

sis (a), (b), (e), (f), (i), (j), and circular polariscope analysis (c), (d), (g), (h), (k), (l), with open (i.e., parallel) analyzer (left

respective images) and closed (i.e., perpendicular) analyzer (right respective images).

of the polarizer. Hence, in experimental analysis with planar
polariscopes, the polarizer can be rotated to identify stress
orientation by means of isoclinic fringes. Circularly polar-
ized light does not exhibit isoclinics, providing clear inter-
pretation of isochromatics. Rotation of the object shows the
fringe patterns from different perspectives and reveals the
internal stress distribution. In this context, tensor field to-
mography based on 3D photoelasticity [WOH02] allows for
estimation of internal stresses.

As described and compared with experiments by Aben,
omitting refraction in our case corresponds to immersing the
object under consideration in a liquid with identical refrac-
tive index to suppress refraction and reflection. However, as
we show below, introducing refraction and reflection in most
cases both improves depth perception and better reflects con-
figurations that are achievable in real experiments.

For further details on polariscope interpretation, we would
like to refer the reader to the related work in Section 2, the
textbook by Doyle [Doy04], and our supplemental material
for introductory examples on photoelastic analysis.

5.2. Polariscopes in Tensor Field Visualization

Figure 1 provides a comparison of different tensor field vi-
sualization techniques. We have chosen tensor field lines
(Figure 1(a)) and tensor glyphs (Figure 1(b)), because they
are widely used, volumetric raycasting of von Mises stress
(Figure 1(c)) due to its physical relevance, and compare
them to our virtual polariscope (Figure 1(d)). While tensor
field lines provide continuous insight into the orientation of
the stresses, they suffer from clutter and occlusion and do
not reasonably convey the stress distribution and magnitude.
Tensor glyphs (Figure 1(b)) show stress direction and give an
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(a) (b) (c)

Figure 5: Two-Point Load dataset. (a) Circular photoelas-

ticity raycasting without refraction. (b) Planar photoelastic-

ity raycasting without refraction. (c) Planar photoelasticity

raycasting with refraction (refractive index of 1.5).

overall impression of the distribution and magnitude of the
internal stress. The major problem with glyphs we see here,
however, is that they cannot provide a continuous picture,
cannot span large ranges of magnitude, and are restricted
to low resolutions due to occlusion and visual clutter. Von
Mises volume rendering (Figure 1(c)) gives a more quan-
titative and physical view. However, as the stress tensor is
represented by a scalar, directional information is lost. Po-
lariscope analysis, on the other hand, provides a continuous
representation, does not suffer from occlusion, and still con-
veys directions and even strong variations of stress.

5.3. Two-Point Load

We start with a simple dataset representing a block with two
loads, one pushing, and one pulling. The data are given on a
regular grid with a resolution of 16×16×8 nodes. For better
insight, we visualize one half, cutting along the two loads.
Figure 5 shows some results obtained with our technique.
We start with a circular polariscope without refraction (Fig-
ure 5(a)). This shows the fringe pattern, but provides little
insight with respect to depth or orientation. In Figure 5(b),
we use the same setup for a plane polariscope. In this case,
the dark isoclines show the circular structure of the stress
field. Adding refraction (Figure 5(c)) improves depth per-
ception, however, at the cost of distortions due to refraction,
and mirroring due to reflection. Nevertheless, this represents
the result that would also be observed in a real experiment.

5.4. Simple Model

This dataset was inspired by the video [FM49]. We recom-
mend watching this video as an introduction to the topic,
and, in particular, on how polariscopes are used. A corre-
sponding finite element stress simulation was obtained (de-
noted Simple Model) and served for exemplary tests as well
as for validation. The finite element simulation was carried
out on a uniform grid with 101× 41× 11 nodes resolution
and represents a homogeneous block of material supported
at two positions and influenced by a load at its top, corre-
sponding to the physical setup in the video (Figure 6(a)). A
comparison with that frame from the video (Figure 6) shows

(a) (b)

Figure 6: Experimental circular polariscope result (a)

from [FM49], and our virtual circular polariscope result (b)

for a corresponding stress simulation denoted Simple Model.

a reasonable fit between the experimental and our virtual
polariscope. Figure 4 provides an overview of the different
modes of our technique using this dataset.

5.5. Brake Lever

This dataset represents a stress simulation of a brake lever
with a reinforcing rib structure. It consists of an unstructured
grid containing 182036 tetrahedra, and provides a single
time step of stress data. Since our implementation supports
only uniform grids, we resampled the data on a regular grid
with a resolution of 120× 743× 365 nodes, and provided a
field for the implicit definition of the interface and one for
the surface normals (Mode 2 of our technique). Figure 7(d)
shows our result for stress-optic coefficient C = 50 without
refraction. In comparison with the corresponding result with
refraction, shown in Figure 7(a), one can clearly see the ben-
efit of refraction and reflection in photoelastic raycasting.
Due to one’s experience with transparent objects, depth per-
ception is, overall, clearly improved. On the other hand, re-
fraction and reflection can mislead interpretation. However,
since our results reflect the real experiment, and support in-
tuitive reasoning, we think that the overall advantages of us-
ing reflection and refraction are evident. Figures 7(e) and (b)
show the same setup, but for the plane polariscope with the
same overall trends. Figures 7(a), (c), and (f), finally show
variation of the stress-optic coefficient. An interesting prop-
erty of polariscope analysis is that even rather large values
for C still produce well-interpretable visualizations due to
the narrowing but still discernible fringe patterns.

5.6. Femur

The last dataset we apply our technique to, is an anatom-
ical simulation of the stress in a Femur. The simulation
consists of 33 time steps, each defined on a uniform grid
of 86 × 81 × 226 nodes. The polariscope analysis shows
the stress distribution from the top of the Femur and that
the stresses mainly span along the outer wall of the bone.
Figure 8 shows selected time steps, all with identical po-
lariscope parametrization. We refer the reader to the sup-
plemental material for the respective video, where we also
demonstrate rotation of the analyzer to provide insight into
the direction of the stresses.
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(a) C = 50, n = 1.25, circular pol. (b) C = 50, n = 1.25, plane pol. (c) C = 75, n = 1.25, circular pol.

(d) C = 50, n = 1, circular pol. (e) C = 50, n = 1, plane pol. (f) C = 25, n = 1.25, circular pol.

Figure 7: Brake Lever dataset for varying stress-optic coefficient C and refractive index n, circular and plane polariscope.

(a) (b) (c) (d) (e)

Figure 8: Selected time steps of Femur dataset, visualized

with circular polariscope, C = 37, refractive index n = 1.3.

6. Conclusion

We have presented virtual polariscope visualization by in-
tegrating photoelasticity into the raycasting framework. For
the integrated photoelasticity, we base our work on the ap-
proach by Aben [Abe79]. By employing the GPU, we are
able to provide interactive analysis and, more important, we
extend Aben’s approach with reflection and refraction in-
cluding Fresnel equations, providing a true counterpart to
3D polariscope analysis of arbitrarily-shaped objects. Our
approach profits from the fact that experimental polariscope
analysis has been applied since more than a century and,
hence, is well understood. As future work, we plan to ex-

tend our approach to continuous refraction and would like to
investigate polarization- and reflection/refraction-aware ray-
casting in other applications.
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Table 1: Render timings in ms for the shown datasets. Inter-

active (10002), vs. high-res resolution (20002). Note that we

provide preview rendering (reduced resolution, increased in-

tegration step, less wave length samples) during interaction,

which achieved more than 60 fps in all experiments.

Dataset Stepsize Interactive High-Res

Simple Model 1×10−2 624 2557
Two-Point Load 1×10−2 1113 6403
Femur 5×10−3 231 904
Brake Lever 5×10−3 363 1288
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